forked from GrupoFWP/DAQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPID.py
398 lines (323 loc) · 11.7 KB
/
SPID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# -*- coding: utf-8 -*-
"""
This script is to make measurements with a National Instruments DAQ.
This script holds the final version of our control loop, designed to
raise an object at a constant given velocity. It is based on the 'SLoop'
script, where a lot of previous test drives and versions were developed.
@author: GrupoFWP
"""
import queue
import threading
import fwp_analysis as fan
import fwp_daq as daq
import fwp_pid as fpid
from fwp_plot import add_style
import fwp_save as sav
from fwp_utils import clip_between
import matplotlib.pyplot as plt
import numpy as np
import os
import nidaqmx as nid
#from time import sleep
#%%
"""Control loop designed to raise an object at constant speed"""
########################## PARAMETERS ##########################
device = daq.devices()[0]
ai_pin = 15 # Literally the number of the DAQ pin
ai_conf = 'Diff' # Referenced mode (measure against GND)
pwm_pin = 38 # Literally the number of the DAQ pin
pwm_frequency = 100e3 # in Hz
pwm_initial_duty_cycle = 30 # in %
pwm_min_duty_cycle = 30 # in %
wheel_radius = 2.5 # in cm
chopper_sections = 100 # number of black spaces on photogate's chopper
samplerate = 5e3 # in Hz
nsamples_each = 1000 # number of samples taken between PID actions
setpoint = 15 # in cm/s
P = 7/3
kp = 45*.6
ki = kp*P/(8*nsamples_each/samplerate)
kd = 2*kp/(P*nsamples_each/samplerate)
integrator = 'windowed'
window_size = 5
log_data = True
filename_mask = 'Log_kp_{kp}_ki_{ki}_kd_{kd}'
filename_folder = 'PID_{}_setpoint'.format(setpoint)
#%%
########################## ALGORITHM ##########################
"""The user's desired PID works on linear velocity and duty cycle.
But the actual PID works on photogate period to avoid some calculus.
To do that, at the beginning of the control loop this code transforms
the user's setpoint expressed on velocity (cm/s) to a virtual setpoint
expressed on photogate frequency (u.a.). It runs 'real_to_virtual'
function to do that.
Then, at the end of the control loop, this code transforms the PID
measurements expressed on photogate frequency (u.a.) to the user's
desired measurements expressed on velocity (cm/s). It runs
'virtual_to_real' function to do that.
"""
# First, define how to calculate photogate frequency on each measurement
def calculate_photogate_frequency(read_data):
"""Returns frequency of photogate signal expressed on a.u."""
# This function is used to analyze each measurement
photogate_derivative = np.diff(read_data)
photogate_period = fan.peak_separation(
photogate_derivative,
prominence=1,
height=2)
return 1 / photogate_period
# Period isn't lineal with duty cycle
# And this frequency isn't expressed on s^-1
# Then, define how to calculate a new duty cycle on each measurement
pwm_initial_duty_cycle = pwm_initial_duty_cycle / 100
pwm_min_duty_cycle = pwm_min_duty_cycle / 100
def calculate_duty_cycle(read_data):
"""Returns duty cycle expressed on u.a."""
try:
velocity = calculate_photogate_frequency(read_data)
except ValueError: # No peaks found
# velocity = pid.last_log.feedback_value # Asume vel=0
velocity = 0
new_duty_cycle = pid.calculate(velocity)
new_duty_cycle = clip_between(new_duty_cycle,
pwm_min_duty_cycle, .99)
return new_duty_cycle
# Now define how to go from real to virtual variable and visceversa
circunference = 2 * np.pi * wheel_radius
dt = 1 / samplerate
dT = nsamples_each * dt
def real_to_virtual(velocity):
"""Calculates frequency of photogate expressed on a.u. from velocity"""
# This function is used to calculate setpoint at the beginning
photogate_frequency = velocity * chopper_sections / circunference
photogate_frequency = dt * photogate_frequency
return photogate_frequency
def virtual_to_real(photogate_frequency):
"""Calculates velocity from frequency of photogate expressed on a.u."""
# This function is only used to calculate velocity at the end
photogate_frequency = photogate_frequency / dt
velocity = circunference * photogate_frequency / chopper_sections
return velocity
########################## CONFIGURATION* ##########################
"""Code sections marked with '*' shouldn't be modified by the user"""
# Initialize communication with DAQ
task = daq.DAQ(device)
# Choose PID
pid = fpid.PIDController(setpoint=setpoint, kp=kp, ki=ki, kd=kd, dt=dT,
log_data=log_data, integrator=integrator)
#pid.set_integrator(window_length=500) # Set integration window
# Configure inputs
task.add_analog_inputs(ai_pin)
task.inputs.pins.configuration = ai_conf
task.inputs.samplerate = samplerate
# Configure outputs
task.add_pwm_outputs(pwm_pin)
task.outputs.pins.frequency = pwm_frequency
task.outputs.pins.duty_cycle = pwm_initial_duty_cycle
# Configure PID
pid.setpoint_transformer = real_to_virtual
pid.set_integrator(window_length=window_size)
pid.reset()
pid.clearlog()
pid.calculate(0) # Initialize with fake first measurement
#%%
########################## MEASUREMENT* ##########################
# Define one thread
q = queue.Queue()
def worker():
while True:
data = q.get() # Waits for data to be available
new_duty_cycle = calculate_duty_cycle(data)
task.outputs.pins.duty_cycle = new_duty_cycle
t = threading.Thread(target=worker)
# Measure on another thread
task.outputs.pins.status = True
t.start()
print("Turn on :D")
#sleep(1)
print("Running PID!")
while True:
try:
data = task.inputs.read(int(nsamples_each))
q.put(data)
except KeyboardInterrupt:
break
task.outputs.pins.status = False
print("Turn off :/")
# Close communication
task.close()
########################## DATA MANAGEMENT ##########################
# Configure data log
header = ['Time (s)', 'Velocity (cm/s)', 'Duty cycle (%)',
'Proportional term (u.a.)', 'Integral term (u.a.)',
'Derivative term (u.a.)']
footer = dict(ai_conf=ai_conf,
pwm_frequency=pwm_frequency,
samplerate=samplerate,
nsamples_each=nsamples_each,
pwm_min_duty_cycle=pwm_min_duty_cycle*100,
pwm_initial_duty_cycle=pwm_initial_duty_cycle*100,
**pid.params)
filename_generator = sav.savefile_helper(filename_folder,
filename_mask)
# Get data
v = virtual_to_real(np.array(pid.log.feedback_value))
dc = np.array(pid.log.new_value) * 100 # User's DC is % but DAQ's is 0-1
t = np.linspace(0, len(v)*dT, len(v))
p = np.array(pid.log.p_term)
i = np.array(pid.log.i_term)
d = np.array(pid.log.d_term)
e = virtual_to_real(p)
# Calculate PID data to plot
pterm = p * pid.kp / dc
iterm = i * pid.ki / dc
dterm = d * pid.kd / dc
# Start plotting
plt.figure()
# Velocity vs time
plt.subplot(3, 1, 1)
plt.plot(t, v, 'o-')
plt.plot(t, e, 'o-') # error
plt.hlines(setpoint, min(t), max(t), linestyles='dotted')
plt.ylabel("Velocity (cm/s)")
plt.ylim(ymax=1.1*max(max(v[1:]), max(e[1:])),
ymin=1.1*min(min(v[1:]), min(e[1:])))
plt.legend(['Signal', 'Error', 'Setpoint'])
# Duty cycle vs time
plt.subplot(3, 1, 2)
plt.plot(t, dc, 'o-r', label='Signal')
plt.hlines(100, min(t), max(t), linestyles='dotted', label='Limits')
plt.hlines(pwm_min_duty_cycle * 100, min(t), max(t),
linestyles='dotted')
plt.ylabel("Duty Cycle (%)")
plt.ylim(ymax=200, ymin=-100)
plt.legend()
# PID parameters vs time
plt.subplot(3,1,3)
plot_styles = ['-o',':o', '--x']
for x, s in zip([iterm, pterm, dterm], plot_styles):
plt.plot(t, x * 100, s)
plt.legend(['I term', 'P term', 'D term'])
plt.xlabel("Time (s)")
plt.ylabel("PID Parameter (%)")
# Show plot
add_style()
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# Save data
filename = filename_generator(**pid.params)
sav.savetxt(os.path.join(os.getcwd(), 'Measurements',
'PID', filename),
np.array([t, v, dc, p, i, d]).T,
header=header, footer=footer)
#%% Cohen_Coon
"""Makes a single measurement on two analog input."""
# PARAMETERS
device = daq.devices()[0] # Assuming you have only 1 connected NI device.
ai_pins = [15]#, 17] # Literally the number of the DAQ pin
ai_conf = 'Dif' # Differential mode
samplerate = 200e3
duration = 3
jump = [65, 40]
filename_mask = "Cohen_Coon_{}_{}_jump.txt"
filename_generator = sav.savefile_helper('Cohen_Coon_2',
filename_mask)
header = ['Tiempo (s)', 'Señal (V)', 'Generador (V)']
footer = dict(samplerate=samplerate,
ai_conf=ai_conf)
nsamples_plot_interval = 1000
nsamples_plot_max = 10000
# ACTIVE CODE
# Initialize communication in order to read
task = daq.DAQ(device, print_messages=True)
# Configure input
task.add_analog_inputs(*ai_pins)
task.inputs.pins.configuration = ai_conf
task.inputs.samplerate = samplerate
# Make a continuous measurement
signal = task.inputs.read(duration=duration, samplerate=samplerate)
# End communication
task.close()
# See data
print("{:.2f}, {:.2f}".format(min(data[:,1]), max(data[:,1])))
plt.figure()
#plt.subplot(2,1,1)
#plt.plot(signal[0,:nsamples_plot_max], 'b.-')
#plt.subplot(2,1,2)
#plt.plot(signal[1,:nsamples_plot_max], 'r.-')
plt.plot(signal, 'b.-')
# Save data
time = np.expand_dims(np.linspace(0, duration, duration*samplerate),
axis=0)
data = np.array(signal).T
if data.ndim==1:
data = np.expand_dims(data, axis=0).T
data = np.concatenate((time.T, data), axis=1)
sav.savetxt(sav.new_name(filename_generator(*jump)),
data,
header=header,
footer=footer)
#%% Cohen_Coon_SMeasure
# Main parameters
samplerate = 5e3
mode = nid.constants.TerminalConfiguration.DIFFERENTIAL
# Other parameters
duration = 3
samples_to_measure = int(samplerate * duration)
channels = ["Dev1/ai0", "Dev1/ai2"]
jump = [80, 50]
filename_mask = "Cohen_Coon_{}_{}_jump.txt"
filename_generator = sav.savefile_helper('Cohen_Coon_Diff',
filename_mask)
header = ['Tiempo (s)', 'Señal (V)', 'Generador (V)']
footer = 'samplerate={:.0f}Hz, mode={}'.format(
samplerate,
str(mode).split('.')[-1])
plot_max = 10000
plot_step = 100
# ACTIVE CODE
with nid.Task() as task:
for channel in channels:
# Configure channel
task.ai_channels.add_ai_voltage_chan(
channel,
terminal_config=mode)
# ai_max=2,
# ai_min=-2)
# Set sampling_rate and samples per channel
task.timing.cfg_samp_clk_timing(
rate=samplerate,
samps_per_chan=samples_to_measure)
# Measure
print("Started acquiring")
signal = task.read(
number_of_samples_per_channel=samples_to_measure)
task.wait_until_done()
print("Ended acquiring")
data = np.array(signal).T
if data.ndim==1:
data = np.expand_dims(data, axis=0).T
print("{:.2f}, {:.2f}".format(min(data[:,1]), max(data[:,1])))
signal = np.array(signal)
time = np.linspace(0, duration, samples_to_measure)
plt.figure()
plt.subplot(2,1,1)
plt.plot(time[:plot_max], signal[0,:plot_max], 'b-')
plt.subplot(2,1,2)
plt.plot(time[:plot_max], signal[1,:plot_max], 'r-')
#plt.plot(time, signal)
plt.figure()
time = np.linspace(0, duration, samples_to_measure)
plt.subplot(2,1,1)
plt.plot(time[plot_max:], abs(signal[0,plot_max:]), 'b-')
#plt.plot(time[plot_max::plot_step], signal[0,plot_max::plot_step], 'b-')
plt.subplot(2,1,2)
plt.plot(time[plot_max:], abs(signal[1,plot_max:]), 'r-')
#plt.plot(time[plot_max::plot_step], signal[1,plot_max::plot_step], 'r-')
#%%
time = np.expand_dims(np.linspace(0, duration, samples_to_measure), axis=0)
data = np.concatenate((time.T, data), axis=1)
sav.savetxt(sav.new_name(filename_generator(*jump)),
data,
header=header,
footer=footer)