-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS_SeveralFits.py
171 lines (143 loc) · 5.17 KB
/
S_SeveralFits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 09 14:28:53 2019
@author: Vall
"""
from itertools import combinations as comb
import iv_analysis_module as iva
import iv_plot_module as ivp
import iv_save_module as ivs
import iv_utilities_module as ivu
from matplotlib.pyplot import close
import numpy as np
import os
#%% LINEAR PREDICTION REPRISE
# Parameters
name = 'M_20191018_11'
home = r'C:\Users\Valeria\OneDrive\Labo 6 y 7'
nexperiments = 4
groups_mode = 'own' # Combinations 'comb', each experiment by its own 'own'
series = 'Power'
# Save parameters
path = os.path.join(home, 'Análisis', series + '_' + name)
overwrite = False
autosave = True
# Plot parameters
plot_params = dict(
plot = True,
interactive = False,
autoclose = True,
extension = '.png'
)
plot_params = ivu.InstancesDict(plot_params)
#%% LOAD DATA
# Make filenames routs
filename = ivs.filenameToMeasureFilename(name, home=home)
fit_filename = ivs.filenameToFitsFilename(name, home=home)
other_fit_filename = os.path.join(path, name+'.txt')
# Load data from a base fit made by hand
results, header, footer = ivs.loadTxt(fit_filename)
# Reorganize data
other_results_keys = ['Nsingular_values', 'chi_squared']
other_results = {k: footer[k] for k in other_results_keys}
fit_params = dict(footer)
for k in other_results_keys:
fit_params.pop(k)
fit_params = ivu.InstancesDict(fit_params)
del footer
# New parameters
fit_params.use_full_mean = False
fit_params.choose_t0 = False
fit_params.choose_tf = False
t0 = fit_params.time_range[0]
tf = fit_params.time_range[-1]
fit_params.svalues = other_results['Nsingular_values']
#%% MAKE SEVERAL FITS
# Make groups of experiments
if groups_mode == 'comb':
# Make all combinations of 3 elements
experiments_groups = [list(c) for c in comb(list(range(nexperiments)), 3)]
elif groups_mode == 'own':
# Take each experiment on its own
experiments_groups = [[i] for i in range(nexperiments)]
print("Watch it! Loop will make " + str(len(experiments_groups)) +
" repetitions. Press Ctrl+C to cancel.")
all_failed_groups = []
all_groups = []
all_results = []
all_other_results = []
all_fit_params = []
#all_tables = []
for i, g in enumerate(experiments_groups):
print("----> Loop {}/{}. Experiments: {}".format(
i+1, len(experiments_groups), g))
try:
fit_params.use_experiments = g
# Load data
t, V, details = ivs.loadNicePumpProbe(filename)
# Choose time interval to fit
if fit_params.choose_t0: # Choose initial time t0
t0 = ivp.interactiveTimeSelector(filename,
autoclose=plot_params.autoclose)
t, V = iva.cropData(t0, t, V)
else:
try:
t, V = iva.cropData(t0, t, V)
except NameError:
t0 = t[0]
if fit_params.choose_tf: # Choose final time tf
tf = ivp.interactiveTimeSelector(filename,
autoclose=plot_params.autoclose)
t, V = iva.cropData(tf, t, V, logic='<=')
else:
try:
t, V = iva.cropData(tf, t, V, logic='<=')
except NameError:
tf = t[-1]
fit_params.time_range = (t0, tf)
# Choose data to fit
if fit_params.use_full_mean:
data = np.mean(V, axis=1)
else:
data = np.mean(V[:, fit_params.use_experiments], axis=1)
# Make a vertical shift
if fit_params.send_tail_to_zero:
function = eval('np.{}'.format(fit_params.tail_method))
V0 = function(data[int( (1-fit_params.use_fraction) * len(data)):])
del function
else:
try:
V0
except NameError:
V0 = 0
data = data - V0
fit_params.voltage_zero = V0
# Use linear prediction
results, other_results, plot_results = iva.linearPrediction(
t, data, details['dt'],
svalues=fit_params.svalues,
autoclose=plot_params.autoclose)
if autosave:
ivs.linearPredictionSave(other_fit_filename, results, other_results,
fit_params, overwrite=overwrite)
# Plot linear prediction
ivp.linearPredictionPlot(other_fit_filename, plot_results,
autosave=autosave,
extension=plot_params.extension,
overwrite=overwrite)
close()
# # Generate fit tables
# tables = iva.linearPredictionTables(fit_params,
# results,
# other_results))
# Save data
all_groups.append(g)
all_results.append(results)
all_other_results.append(other_results)
all_fit_params.append(fit_params)
# all_tables.append(tables)
except:
all_failed_groups.append(g)
print("Failed! :(")
del i, g, experiments_groups, t0, tf, V0, t, data
del results, other_results, plot_results, fit_params, plot_params