🕴️ finetune LLM
🦙 model on custom DataSet
, using unsloth
🕴️ ONESTEP CODE : finetune.py 🦙
Prepare DataSet
to match the unsloth
format :
process_dataset_to_unsloth.ipynb
Process Dataset -> dataset_to_unsloth.ipynb
Adapt the config arguments
: finetune.py
in finetune.md
finetune.md
def finetune (
# -- PARAMETERS CONFIG --
SOURCE_MODEL = "unsloth/Phi-3-mini-4k-instruct" ,
DATASET = "0xZee/arxiv-math-Unsloth-tune-50k" ,
#DATASET = "ArtifactAI/arxiv-math-instruct-50k",
MAX_STEPS = 444 ,
FINETUNED_LOCAL_MODEL = "Phi-3-mini_ft_arxiv-math" ,
FINETUNED_ONLINE_MODEL = "0xZee/Phi-3-mini_ft_arxiv-math" ,
TEST_PROMPT = "Which compound is antiferromagnetic?" , # response : common magnetic ordering in various materials.
):
Run the onestep file : finetune.py
in finetune.md
finetune.md
🕴️ finetune llama3.1 🦙 model on custom DataSet
🏬 FineTunning Framework : Unsloth
on GPU Tesla T4
🦙 Source Model : models--unsloth--meta-llama-3.1-8b-bnb-4bit
Model 🕴️
💾 Training DataSet ; "yahma/alpaca-cleaned" on HuggingFace
⚙️ Fine-Tuned Model : 🕴️ llama3-1_0xZee_model
Model saved to : https://huggingface.co/0xZee/llama3-1_0xZee_model