-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
111 lines (86 loc) · 7.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import pandas as pd
import pickle
import numpy as np
# load databasedataset===================================
df=pd.read_csv('datasets/Training.csv')
sym_des = pd.read_csv("datasets/symtoms_df.csv")
precautionsd = pd.read_csv("datasets/precautions_df.csv")
workoutd = pd.read_csv("datasets/workout_df.csv")
descriptiond = pd.read_csv("datasets/description.csv")
medicationsd = pd.read_csv('datasets/medications.csv')
dietsd = pd.read_csv("datasets/diets.csv")
# load model===========================================
svc = pickle.load(open('svc.pkl','rb'))
#============================================================
# custome and helping functions
#==========================helper funtions================
def helper(dis):
desc = descriptiond[descriptiond['Disease'] == dis]['Description']
desc = " ".join([w for w in desc])
pre = precautionsd[precautionsd['Disease'] == dis][['Precaution_1', 'Precaution_2', 'Precaution_3', 'Precaution_4']]
pre = [col for col in pre.values]
med = medicationsd[medicationsd['Disease'] == dis]['Medication']
med = [med for med in med.values]
die = dietsd[dietsd['Disease'] == dis]['Diet']
die = [die for die in die.values]
wrkout = workoutd[workoutd['disease'] == dis] ['workout']
return desc,pre,med,die,wrkout
symptoms_dict = {'itching': 0, 'skin_rash': 1, 'nodal_skin_eruptions': 2, 'continuous_sneezing': 3, 'shivering': 4, 'chills': 5, 'joint_pain': 6, 'stomach_pain': 7, 'acidity': 8, 'ulcers_on_tongue': 9, 'muscle_wasting': 10, 'vomiting': 11, 'burning_micturition': 12, 'spotting_ urination': 13, 'fatigue': 14, 'weight_gain': 15, 'anxiety': 16, 'cold_hands_and_feets': 17, 'mood_swings': 18, 'weight_loss': 19, 'restlessness': 20, 'lethargy': 21, 'patches_in_throat': 22, 'irregular_sugar_level': 23, 'cough': 24, 'high_fever': 25, 'sunken_eyes': 26, 'breathlessness': 27, 'sweating': 28, 'dehydration': 29, 'indigestion': 30, 'headache': 31, 'yellowish_skin': 32, 'dark_urine': 33, 'nausea': 34, 'loss_of_appetite': 35, 'pain_behind_the_eyes': 36, 'back_pain': 37, 'constipation': 38, 'abdominal_pain': 39, 'diarrhoea': 40, 'mild_fever': 41, 'yellow_urine': 42, 'yellowing_of_eyes': 43, 'acute_liver_failure': 44, 'fluid_overload': 45, 'swelling_of_stomach': 46, 'swelled_lymph_nodes': 47, 'malaise': 48, 'blurred_and_distorted_vision': 49, 'phlegm': 50, 'throat_irritation': 51, 'redness_of_eyes': 52, 'sinus_pressure': 53, 'runny_nose': 54, 'congestion': 55, 'chest_pain': 56, 'weakness_in_limbs': 57, 'fast_heart_rate': 58, 'pain_during_bowel_movements': 59, 'pain_in_anal_region': 60, 'bloody_stool': 61, 'irritation_in_anus': 62, 'neck_pain': 63, 'dizziness': 64, 'cramps': 65, 'bruising': 66, 'obesity': 67, 'swollen_legs': 68, 'swollen_blood_vessels': 69, 'puffy_face_and_eyes': 70, 'enlarged_thyroid': 71, 'brittle_nails': 72, 'swollen_extremeties': 73, 'excessive_hunger': 74, 'extra_marital_contacts': 75, 'drying_and_tingling_lips': 76, 'slurred_speech': 77, 'knee_pain': 78, 'hip_joint_pain': 79, 'muscle_weakness': 80, 'stiff_neck': 81, 'swelling_joints': 82, 'movement_stiffness': 83, 'spinning_movements': 84, 'loss_of_balance': 85, 'unsteadiness': 86, 'weakness_of_one_body_side': 87, 'loss_of_smell': 88, 'bladder_discomfort': 89, 'foul_smell_of urine': 90, 'continuous_feel_of_urine': 91, 'passage_of_gases': 92, 'internal_itching': 93, 'toxic_look_(typhos)': 94, 'depression': 95, 'irritability': 96, 'muscle_pain': 97, 'altered_sensorium': 98, 'red_spots_over_body': 99, 'belly_pain': 100, 'abnormal_menstruation': 101, 'dischromic _patches': 102, 'watering_from_eyes': 103, 'increased_appetite': 104, 'polyuria': 105, 'family_history': 106, 'mucoid_sputum': 107, 'rusty_sputum': 108, 'lack_of_concentration': 109, 'visual_disturbances': 110, 'receiving_blood_transfusion': 111, 'receiving_unsterile_injections': 112, 'coma': 113, 'stomach_bleeding': 114, 'distention_of_abdomen': 115, 'history_of_alcohol_consumption': 116, 'fluid_overload.1': 117, 'blood_in_sputum': 118, 'prominent_veins_on_calf': 119, 'palpitations': 120, 'painful_walking': 121, 'pus_filled_pimples': 122, 'blackheads': 123, 'scurring': 124, 'skin_peeling': 125, 'silver_like_dusting': 126, 'small_dents_in_nails': 127, 'inflammatory_nails': 128, 'blister': 129, 'red_sore_around_nose': 130, 'yellow_crust_ooze': 131}
diseases_list = {15: 'Fungal infection', 4: 'Allergy', 16: 'GERD', 9: 'Chronic cholestasis', 14: 'Drug Reaction', 33: 'Peptic ulcer diseae', 1: 'AIDS', 12: 'Diabetes ', 17: 'Gastroenteritis', 6: 'Bronchial Asthma', 23: 'Hypertension ', 30: 'Migraine', 7: 'Cervical spondylosis', 32: 'Paralysis (brain hemorrhage)', 28: 'Jaundice', 29: 'Malaria', 8: 'Chicken pox', 11: 'Dengue', 37: 'Typhoid', 40: 'hepatitis A', 19: 'Hepatitis B', 20: 'Hepatitis C', 21: 'Hepatitis D', 22: 'Hepatitis E', 3: 'Alcoholic hepatitis', 36: 'Tuberculosis', 10: 'Common Cold', 34: 'Pneumonia', 13: 'Dimorphic hemmorhoids(piles)', 18: 'Heart attack', 39: 'Varicose veins', 26: 'Hypothyroidism', 24: 'Hyperthyroidism', 25: 'Hypoglycemia', 31: 'Osteoarthristis', 5: 'Arthritis', 0: '(vertigo) Paroymsal Positional Vertigo', 2: 'Acne', 38: 'Urinary tract infection', 35: 'Psoriasis', 27: 'Impetigo'}
# Model Prediction function
def get_predicted_value(patient_symptoms):
input_vector = np.zeros(len(symptoms_dict))
for item in patient_symptoms:
input_vector[symptoms_dict[item]] = 1
return diseases_list[svc.predict([input_vector])[0]]
def predict_disease(symptoms):
print(symptoms)
disease=get_predicted_value(symptoms)
return disease
def descriptionf(disease):
desc = descriptiond[descriptiond['Disease'] == disease]['Description']
desc = " ".join([w for w in desc])
return desc
def precautionf(disease):
pre = precautionsd[precautionsd['Disease'] == disease][['Precaution_1', 'Precaution_2', 'Precaution_3', 'Precaution_4']]
pre = [col for col in pre.values]
return pre
def medicinef(disease):
med = medicationsd[medicationsd['Disease'] == disease]['Medication']
med = [med for med in med.values]
return med
def dietf(disease):
die = dietsd[dietsd['Disease'] == disease]['Diet']
die = [die for die in die.values]
return die
def workoutf(disease):
wrkout = workoutd[workoutd['disease'] == disease] ['workout']
def ai_doctor(symptoms):
print(symptoms)
symptoms=list(map(str,symptoms.split()))
predicted_disease = predict_disease(symptoms)
print(predicted_disease)
descriptions = descriptionf(predicted_disease)
precaution = precautionf(predicted_disease)
medication = medicinef(predicted_disease)
workout = workoutf(predicted_disease)
diet = dietf(predicted_disease)
return predicted_disease, descriptions, precaution, medication, workout, diet
# Create the Gradio interface
iface = gr.Interface(
fn=ai_doctor,
inputs=['text'],
outputs=[
gr.Textbox(label="Predicted Disease"),
gr.Textbox(label="Description"),
gr.Textbox(label="Precaution"),
gr.Textbox(label="Medication"),
gr.Textbox(label="Workout"),
gr.Textbox(label="Diet")
],
title="AI Doctor",
description="Enter your symptoms to get a predicted disease and related information."
)
# Launch the interface
iface.launch(share=True)