-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
103 lines (91 loc) · 4.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#! python3
# %%
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, random_split, SubsetRandomSampler, BatchSampler
from torch.optim import Adam, AdamW
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
import pandas as pd
from pathlib import Path
from scripts.dataset import (
TranslationDataset,
) # The logic of TranslationDataset is defined in the file dataset.py
from scripts.model import TranslationNN
from scripts.utils import token_to_sentence, train_loop, valid_loop,forward_pass,CustomAdam,save_checkpoint
import wandb
from dotenv import load_dotenv
import os
import evaluate # this is a hugging face library
from setup import get_tokenizer,get_dataset,get_dataloader,get_model,get_optimizer,get_scheduler,get_bleu,init_checkpoint
import yaml
from dataclasses import make_dataclass
from tqdm.auto import tqdm
load_dotenv()
# %%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
root_path = Path(__file__).resolve().parents[0]
data_path = root_path / "data"
model_path = root_path / "saved_models"
checkpoint_path = Path(f"{model_path}/checkpoint.tar")
train_path, val_path,test_path = data_path / "train/translations.csv", data_path / "val/translations.csv", data_path / "test/translations.csv"
source_tokenizer_path, target_tokenizer_path = data_path / "tokenizer_en.model", data_path / "tokenizer_fr.model"
# optional, if you want to remove existing checkpoint
if checkpoint_path.exists():
checkpoint_path.unlink()
#%% init tokenizer, checkpoint
source_tokenizer,target_tokenizer = get_tokenizer(source_tokenizer_path), get_tokenizer(target_tokenizer_path)
with open('config/config.yaml') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
fields = [(k,type(v)) for k,v in config.items()]
DotDict = make_dataclass('DotDict',fields)
conf = DotDict(**config)
checkpoint = init_checkpoint(conf,checkpoint_path,device)
# check if checkpoint exists
if not checkpoint_path.exists():
raise Exception("No checkpoint found.")
#%%
def main(config=None,project=None,name=None,checkpoint=None):
# keep the entire code within the wandb context manager
with wandb.init(config=config,project=project,name=name):
# all the code goes here
c = wandb.config
# get dataset
train_set,val_set,test_set = get_dataset(train_path,source_tokenizer,target_tokenizer), get_dataset(val_path,source_tokenizer,target_tokenizer), get_dataset(test_path,source_tokenizer,target_tokenizer)
# get loaders
train_loader,val_loader,test_loader = get_dataloader(train_set,c.batch_size), get_dataloader(val_set,c.batch_size), get_dataloader(test_set,c.batch_size)
# get model
model = get_model(c.vocab_source,c.vocab_target,c.embedding_size,c.hidden_size,c.dropout,c.dropout,c.num_layers,c.dot_product)
# get optimizer
optim = get_optimizer(model, c.optimizer, c.learning_rate)
# OPTIONAL: get_scheduler
scheduler = get_scheduler(optim, c.scheduler)
# loss fn
loss_fn = nn.CrossEntropyLoss(reduction="none")
# training loop
num_epochs = c.num_epochs # hard coding this value for now until further discussion
for epoch in tqdm(range(num_epochs)):
print(f"Epoch {epoch+1}")
train_loss = train_loop(model, train_loader, loss_fn, optim,scheduler,epoch, device)
print(f"Training Loss for Epoch {epoch+1} is {train_loss:.4f}")
val_loss = valid_loop(model, val_loader, loss_fn, device)
print(f"Validation Loss for Epoch {epoch+1} is {val_loss:.4f}")
# if validation loss lower than checkpoint, save new weights
if val_loss < checkpoint["loss"]:
checkpoint = save_checkpoint(checkpoint_path, model, epoch,val_loss,optim,scheduler)
bleu_score_test = get_bleu(model, test_loader, device)
bleu_score_val = get_bleu(model,val_loader,device)
print(f"Mean BLEU score is {bleu_score_val:.4f}")
metrics = {
"baseplots/epoch": epoch,
"baseplots/train_loss": train_loss,
"baseplots/val_loss": val_loss,
"baseplots/bleu_score_val": bleu_score_val,
"baseplots/bleu_score": bleu_score_test
}
wandb.log(metrics)
wandb.log({"bleu":bleu_score_test})
# run the experiment
name = "GRU-6-64"
project_name="french"
main(config=config,project=project_name,name=name,checkpoint=checkpoint)