-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_hw3.py
144 lines (110 loc) · 4.01 KB
/
cnn_hw3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam, SGD
########################################
# Loading and normalizing CIFAR10
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
########################################
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(3, 10, 5)
self.conv2 = nn.Conv2d(10, 20, 5, padding=1)
self.conv3 = nn.Conv2d(20, 35, 5)
self.fc1 = nn.Linear(35, 30)
self.fc2 = nn.Linear(30, 20)
self.fc3 = nn.Linear(20, 10)
def forward(self, x):
in_size = x.size(0)
#x = F.relu(self.pool(self.conv1(x)))
#x = F.relu(self.pool(self.conv2(x)))
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(in_size, -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
########################################
# Define a Loss function and optimizer
# Add code here (use built-in function)
model = Net()
# Cross Entropy Loss Function
lossf = nn.CrossEntropyLoss()
# Stochastic Gradient Descent with Momentum
optimizer = Adam(model.parameters())
n = 20
########################################
# Train the network
for epoch in range(n): # loop over the dataset multiple times
# Add code here, this should include
# 1- forward pass +otimize + backward pass
i = 0
running_loss = 0.0
for data in trainloader:
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
# 2- calculate and print loss
loss = lossf(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
i += 1
########################################
# Save the trained model
# Add code here
PATH='./3cnn.pth'
torch.save(model.state_dict(), PATH)
########################################
# Print Confusion matrix for the test set
# Add code here
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
########################################
########################################