-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaim.html
728 lines (697 loc) · 38 KB
/
aim.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.4.555">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="author" content="Alex MacPhail">
<meta name="dcterms.date" content="2024-10-02">
<title>Adaptive Image Monitoring (AIM) Program</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<script src="aim_files/libs/clipboard/clipboard.min.js"></script>
<script src="aim_files/libs/quarto-html/quarto.js"></script>
<script src="aim_files/libs/quarto-html/popper.min.js"></script>
<script src="aim_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="aim_files/libs/quarto-html/anchor.min.js"></script>
<link href="aim_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="aim_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="aim_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="aim_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="aim_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script src="aim_files/libs/kePrint-0.0.1/kePrint.js"></script>
<link href="aim_files/libs/lightable-0.0.1/lightable.css" rel="stylesheet">
</head>
<body>
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article toc-left">
<div id="quarto-sidebar-toc-left" class="sidebar toc-left">
<nav id="TOC" role="doc-toc" class="toc-active" data-toc-expanded="99">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#concepts" id="toc-concepts" class="nav-link active" data-scroll-target="#concepts">Concepts</a>
<ul>
<li><a href="#unconventional-camera-placements" id="toc-unconventional-camera-placements" class="nav-link" data-scroll-target="#unconventional-camera-placements">Unconventional camera placements</a></li>
<li><a href="#distance-based-detection" id="toc-distance-based-detection" class="nav-link" data-scroll-target="#distance-based-detection">Distance-based detection</a></li>
<li><a href="#point-based-image-tagging" id="toc-point-based-image-tagging" class="nav-link" data-scroll-target="#point-based-image-tagging">Point-based image tagging</a></li>
<li><a href="#event-tagging" id="toc-event-tagging" class="nav-link" data-scroll-target="#event-tagging">Event tagging</a></li>
<li><a href="#artificial-intelligence" id="toc-artificial-intelligence" class="nav-link" data-scroll-target="#artificial-intelligence">Artificial Intelligence</a></li>
<li><a href="#proposed-wildtrax-enhancements" id="toc-proposed-wildtrax-enhancements" class="nav-link" data-scroll-target="#proposed-wildtrax-enhancements">Proposed WildTrax Enhancements</a></li>
</ul></li>
<li><a href="#business-cases" id="toc-business-cases" class="nav-link" data-scroll-target="#business-cases">Business Cases</a>
<ul>
<li><a href="#nest-monitoring" id="toc-nest-monitoring" class="nav-link" data-scroll-target="#nest-monitoring">Nest monitoring</a>
<ul class="collapse">
<li><a href="#pileated-woodpecker" id="toc-pileated-woodpecker" class="nav-link" data-scroll-target="#pileated-woodpecker">Pileated Woodpecker</a></li>
<li><a href="#owls" id="toc-owls" class="nav-link" data-scroll-target="#owls">Owls</a></li>
</ul></li>
<li><a href="#colony-and-group-monitoring" id="toc-colony-and-group-monitoring" class="nav-link" data-scroll-target="#colony-and-group-monitoring">Colony and group monitoring</a>
<ul class="collapse">
<li><a href="#seabirds" id="toc-seabirds" class="nav-link" data-scroll-target="#seabirds">Seabirds</a></li>
<li><a href="#feral-horses" id="toc-feral-horses" class="nav-link" data-scroll-target="#feral-horses">Feral Horses</a></li>
<li><a href="#bats" id="toc-bats" class="nav-link" data-scroll-target="#bats">Bats</a></li>
<li><a href="#swallows" id="toc-swallows" class="nav-link" data-scroll-target="#swallows">Swallows</a></li>
<li><a href="#ducks" id="toc-ducks" class="nav-link" data-scroll-target="#ducks">Ducks</a></li>
</ul></li>
<li><a href="#groud-level-monitoring" id="toc-groud-level-monitoring" class="nav-link" data-scroll-target="#groud-level-monitoring">Groud-level monitoring</a>
<ul class="collapse">
<li><a href="#small-mammals" id="toc-small-mammals" class="nav-link" data-scroll-target="#small-mammals">Small mammals</a></li>
</ul></li>
</ul></li>
</ul>
</nav>
</div>
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
</div>
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title">Adaptive Image Monitoring (AIM) Program</h1>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Author</div>
<div class="quarto-title-meta-contents">
<p>Alex MacPhail </p>
</div>
</div>
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">October 2, 2024</p>
</div>
</div>
</div>
</header>
<p>The Adaptive Image Monitoring (AIM) program is a collaborative initiative focused on enhancing biodiversity data collection through the strategic placement of remote camera traps in diverse scenarios. By employing science-based decision-making and standardized protocols, AIM optimizes remote camera placement to increase habitat and species coverage, thereby providing deeper and more accurate insights into species behaviour, population dynamics, and ecology. Integrated with WildTrax’s remote camera sensor, AIM efficiently channels this data into streamlined workflows, facilitating consistent and reliable long-term species monitoring.</p>
<section id="concepts" class="level2">
<h2 class="anchored" data-anchor-id="concepts">Concepts</h2>
<section id="unconventional-camera-placements" class="level3">
<h3 class="anchored" data-anchor-id="unconventional-camera-placements">Unconventional camera placements</h3>
<p>Remote camera traps are a widely used tool for monitoring animals with deployment strategies designed to optimize detection rates principally for medium to large mammals. These cameras are typically positioned at key locations, such as along wildlife trails, near water sources, at feeding stations, or in random designs to capture the activity of target species. By strategically placing remote camera traps, researchers can calculate detection rates across a range of taxa, maximizing the efficiency and output of these devices. Beyond mammals, remote camera traps can also be effective in capturing other fauna, including birds, reptiles, or small mammals, depending on the setup and environment. The integration of remote camera trap data with other environmental sensors (e.g., acoustic sensors) also allows for a more comprehensive view of ecosystem dynamics, providing valuable insights into species behavior, population trends, and habitat use.</p>
<p>Incorporating remote camera trap data from various uses and sources into platforms like WildTrax presents significant potential. By integrating remote camera trap data alongside acoustic and other environmental sensor data, WildTrax can serve as a centralized repository for diverse types of wildlife monitoring data. This harmonization allows researchers to analyze cross-sensor data in a unified format, leading to richer ecological insights and improving the potential for artificial intelligence-driven analytics. With the right data management strategies, WildTrax can support the scaling of remote camera trap studies, improving accessibility for various stakeholders and enhancing species monitoring efforts at larger ecological scales.</p>
</section>
<section id="distance-based-detection" class="level3">
<h3 class="anchored" data-anchor-id="distance-based-detection">Distance-based detection</h3>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="distance.png" class="wrapping img-fluid figure-img"></p>
<figcaption>Known distances to features</figcaption>
</figure>
</div>
<p>Estimating how far an animal is from a camera is important for understanding animal density and distribution. Distance-based detection allows researchers to calculate the effective detection range of the camera, which can then be used to estimate animal densities within the surveyed area. Factors such as vegetation, terrain, and species-specific behaviour can influence detection distances, making it important to calibrate camera trap systems for precise measurements. Distance-based data not only improves species counts but can also enable spatial modeling of animal movements and habitat preferences. By combining this information with camera trap data in WildTrax, researchers can map species distributions, analyze animal densities over large areas, and refine conservation strategies based on real-time, location-specific data. This approach increases the accuracy of density estimates and enhances our understanding of how species use their environment across different landscapes and ecosystems.</p>
</section>
<section id="point-based-image-tagging" class="level3">
<h3 class="anchored" data-anchor-id="point-based-image-tagging">Point-based image tagging</h3>
<p>Point-based image tagging provides a more efficient way to label small or distant objects within images, compared to bounding boxes. In situations where animals or objects occupy only a small portion of the image, tagging the exact location with a point can increase precision and reduce ambiguity. This method is particularly useful for identifying smaller species, distinguishing between multiple animals in the same frame, or tagging specific features, such as nests or food items, within cluttered environments. Implementing point-based tagging in WildTrax allows users to label data more accurately, improving the quality of machine learning training sets and enabling artificial intelligence models to detect and classify objects with greater accuracy. This technique can streamline data processing, reducing manual tagging efforts while maintaining high-quality datasets for ecological studies.</p>
</section>
<section id="event-tagging" class="level3">
<h3 class="anchored" data-anchor-id="event-tagging">Event tagging</h3>
<p>Reporting on behaviours occurring in an image is vital for providing context to the animal’s life history. Event tagging helps researchers and automated systems capture these behaviors, such as foraging, resting, or interacting with other animals. Tagging these events can offer insights into species’ activity patterns, behavioral ecology, and interactions with their environment. For example, identifying the presence of offspring or predation behavior can add depth to species monitoring efforts, enabling more informed conservation decisions. By incorporating event tags into platforms like WildTrax, researchers can systematically categorize behaviors, improving data richness and making it easier to analyze trends over time. This allows for more granular data interpretation and provides a clearer picture of species’ activity patterns across various ecosystems.</p>
</section>
<section id="artificial-intelligence" class="level3">
<h3 class="anchored" data-anchor-id="artificial-intelligence">Artificial Intelligence</h3>
<p>Artificial intelligence (AI) can significantly enhance the speed and accuracy of data processing. By automating tasks such as species identification, behavior tagging, and event detection, AI reduces the manual effort required for image and video analysis. Machine learning models can be trained to recognize species-specific traits and behaviors, helping researchers analyze large datasets more efficiently. This also enables the discovery of patterns that might be difficult for humans to detect, leading to more insightful ecological analyses. Enhancing the current AI-driven algorithms in WildTrax, i.e. Megadetector can accelerate data processing workflows, improves accuracy, and opens new avenues for large-scale wildlife monitoring, making it easier to manage and interpret data from various sensors.</p>
</section>
<section id="proposed-wildtrax-enhancements" class="level3">
<h3 class="anchored" data-anchor-id="proposed-wildtrax-enhancements">Proposed WildTrax Enhancements</h3>
<p>With this we aim to achieve the goals of having adaptive camera usage implemented by several key enhancements to WildTrax:</p>
<ul>
<li>Target additions (e.g., nest cavities): New features allow users to tag specific targets such as nest cavities, adding detail to species observations.</li>
<li>Target metadata (e.g., cavity size, cavity depth): These fields capture critical attributes of target structures, providing deeper insights into habitat usage.</li>
<li>Species behaviours (e.g., entering/exiting cavity, feeding young): The ability to tag specific behaviors adds context to species’ life history and reproductive strategies.</li>
<li>Sensor to target metadata (e.g., distance, angle): This enables more precise data collection by recording how sensor placement relates to the target, improving the accuracy of behavioural data.</li>
<li>Field of view metadata (e.g., zoomed in): Adding metadata on camera zoom levels allows researchers to standardize observations across different levels of magnification.</li>
<li>Visit metadata additions (e.g., survey polygons): Survey polygons offer spatial context, helping to map the exact area covered during a visit.</li>
<li>Explore efficiencies in the usage of aritifical intelligence for event, point and group-based tagging</li>
<li>Analytics: Expanded analytics capabilities allow users to generate detailed reports on species detections, behavior, and environmental conditions across time and space.</li>
</ul>
</section>
</section>
<section id="business-cases" class="level2">
<h2 class="anchored" data-anchor-id="business-cases">Business Cases</h2>
<section id="nest-monitoring" class="level3">
<h3 class="anchored" data-anchor-id="nest-monitoring">Nest monitoring</h3>
<p>The <a href="https://www.canada.ca/en/environment-climate-change/services/avoiding-harm-migratory-birds/fact-sheet-nest-protection-under-mbr-2022.html">Migratory Birds Regulations, 2022</a> (MBR 2022) represent a significant shift in the protection of migratory bird nests across Canada. Previously, the Migratory Birds Regulations (MBR) provided year-round protection for the nests of all 395 migratory bird species, regardless of whether they were active. However, under MBR 2022, protection has been narrowed to nests that contain a live bird or viable egg, aligning conservation efforts with the active use of the nest. This change emphasizes that the conservation value of most nests is highest during periods of occupancy, offering a more targeted approach. For 18 species (see @ref(fig:nests)) listed on Schedule 1, nests receive year-round protection until they are deemed abandoned. This regulatory adjustment enhances both conservation outcomes and the ability for stakeholders to predict and manage their compliance while working on landscapes that may impact bird nests.</p>
<p>MBR 2022 requires stakeholders to monitor nests for up to three years in some cases, placing new legal obligations on regulators, developers, and land managers. This creates a substantial demand for resources to collect, interpret, and report on nest monitoring data in a standardized, compliant manner. WildTrax is uniquely positioned to meet this need, providing tools to streamline the collection, analysis, and reporting of nest data. As a result, we can anticipate a significant increase in both current users and new users turning to WildTrax to ensure regulatory compliance and to create efficient pipelines for species protection and remediation.</p>
<div class="cell" data-show="false">
<div class="cell-output-display">
<table class="table caption-top table-sm table-striped small" data-quarto-postprocess="true">
<caption>Migratory Bird Nest Protection Schedule</caption>
<thead>
<tr class="header">
<th style="text-align: left;" data-quarto-table-cell-role="th">Species of migratory bird</th>
<th style="text-align: right;" data-quarto-table-cell-role="th">Waiting period (months)</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">Pigeon Guillemot</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Rhinoceros Auklet</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Atlantic Puffin</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Tufted Puffin</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Horned Puffin</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Manx Shearwater</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Northern Gannet</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Fork-tailed Storm Petrel</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Leach’s Storm Petrel</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Cassin`s Auklet</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Ancient Murrelet</td>
<td style="text-align: right;">12</td>
</tr>
<tr class="even">
<td style="text-align: left;">Great Egret</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Great Blue Heron</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="even">
<td style="text-align: left;">Cattle Egret</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Green Heron</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="even">
<td style="text-align: left;">Snowy Egret</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Black-crowned Night Heron</td>
<td style="text-align: right;">24</td>
</tr>
<tr class="even">
<td style="text-align: left;">Pileated Woodpecker</td>
<td style="text-align: right;">36</td>
</tr>
</tbody>
</table>
</div>
</div>
<section id="pileated-woodpecker" class="level4">
<h4 class="anchored" data-anchor-id="pileated-woodpecker">Pileated Woodpecker</h4>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="piwo.jpg" class="wrapping img-fluid figure-img"></p>
<figcaption>Pileated Woodpecker</figcaption>
</figure>
</div>
<p>The MBR 2022 protects Pileated Woodpecker nests year-round, requiring a 36-month wait before removing unoccupied cavities. Recent projects (<a href="(https://ee-bgcasey-piwomodels.projects.earthengine.app/view/pileatedwoodpecker)">Casey et al. 2024</a> have shown that using predictive mapping and remote sensing tools to help locate nests and optimize monitoring, with regular updates based on new data, will help to streamline the workflow behind.</p>
</section>
<section id="owls" class="level4">
<h4 class="anchored" data-anchor-id="owls">Owls</h4>
</section>
</section>
<section id="colony-and-group-monitoring" class="level3">
<h3 class="anchored" data-anchor-id="colony-and-group-monitoring">Colony and group monitoring</h3>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="murre.jpg" class="wrapping img-fluid figure-img"></p>
<figcaption>Murre</figcaption>
</figure>
</div>
<p>The study of groups and colonies of species has historically presented significant challenges for researchers aiming to elucidate biological metrics. The adoption of remote camera traps has transformed colony monitoring, yielding more accessible and reliable data compared to conventional methodologies such as aerial surveys and boat-based counts. The AIM program recognizes the potential synergies afforded by remote cameras in facilitating the comprehensive data lifecycle, from initial collection through to analysis. In light of recent advancements in individual identification techniques, the AIM program aims to integrate acoustic recording units (ARUs) and camera data collection, thereby enhancing insights into these species’ ecology and behaviour.</p>
<section id="seabirds" class="level4">
<h4 class="anchored" data-anchor-id="seabirds">Seabirds</h4>
<p>Seabird colony monitoring presents significant challenges due to the remoteness of many colonies and the logistical difficulties of conducting more than one survey per season. Traditional monitoring methods often provide only a snapshot of colony activity, limiting our understanding of critical factors such as arrival times, breeding success, and seasonal behaviors. Deploying cameras at seabird colonies offers a transformative solution, allowing for continuous time-lapse photography and other forms of image capture, which dramatically increase the amount of data available. This approach provides a more comprehensive view of colony dynamics, including daily and seasonal patterns that would otherwise go unnoticed. Enhancements to WildTrax would create a seamless platform for users to efficiently manage seabird colony monitoring via camera traps. By integrating camera data with analytical tools and automating workflows, WildTrax can streamline the process of collecting, processing, and interpreting the massive volumes of image data generated from remote sites. This capability would not only improve the efficiency of monitoring efforts but also allow for more frequent and detailed observations, contributing to a deeper understanding of seabird behavior and population trends.</p>
<p>There is a growing need for data management solutions to support these efforts, particularly from Environment and Climate Change Canada (ECCC). ECCC is tasked with overseeing the protection of migratory species, including seabirds, and faces increasing pressure to improve monitoring capabilities under evolving regulations. The ability to collect, store, and analyze large datasets from remote colonies is essential for compliance, conservation planning, and reporting. WildTrax can fulfill this need by offering an integrated system that helps stakeholders manage seabird monitoring data in a standardized, accessible way, ensuring that regulatory and conservation objectives are met efficiently and effectively.</p>
</section>
<section id="feral-horses" class="level4">
<h4 class="anchored" data-anchor-id="feral-horses">Feral Horses</h4>
<p>Feral horse abundance / density</p>
</section>
<section id="bats" class="level4">
<h4 class="anchored" data-anchor-id="bats">Bats</h4>
<p>Can we take pictures of bats exiting colonies?</p>
</section>
<section id="swallows" class="level4">
<h4 class="anchored" data-anchor-id="swallows">Swallows</h4>
<p>Can we take pictures of swallows at roost / colonies? Under bridges? Wide-angle view to count flocks?</p>
</section>
<section id="ducks" class="level4">
<h4 class="anchored" data-anchor-id="ducks">Ducks</h4>
<p>Can we compare camera vs ARUs for duck counts when the camera is beside a lake?</p>
</section>
</section>
<section id="groud-level-monitoring" class="level3">
<h3 class="anchored" data-anchor-id="groud-level-monitoring">Groud-level monitoring</h3>
<section id="small-mammals" class="level4">
<h4 class="anchored" data-anchor-id="small-mammals">Small mammals</h4>
</section>
</section>
</section>
</main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>