forked from mraveri/tensiometer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.material.py
104 lines (80 loc) · 3.03 KB
/
.material.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
This is random material, do not read it :)
"""
def _vec_to_log_pdm(vec, d):
"""
"""
# get indexes:
ind = np.tril_indices(d, 0)
# initialize:
mat = np.zeros((d, d))
mat[ind] = vec
# take exponential of the diagonal to ensure positivity:
mat[np.diag_indices(d)] = np.exp(np.diagonal(mat))
#
return np.dot(mat, mat.T)
def _log_pdm_to_vec(pdm, d):
"""
"""
# decompose:
mat = np.linalg.cholesky(pdm)
# take log of diagonal:
mat[np.diag_indices(d)] = np.log(np.diagonal(mat))
#
return mat[np.tril_indices(d, 0)]
def _temp_vec_kde_pdf(x, samples, weights):
"""
Utility function to compute the KDE
"""
X = np.subtract(x[np.newaxis, :, :], samples[:, np.newaxis, :])
_temp = np.dot(weights, np.exp(-0.5*(X*X).sum(axis=2)))
return np.log(_temp)
C_p1, C_p12 = chain_2.cov(pars=param_names), chain_12.cov(pars=param_names)
C_Pi = chain_prior.cov(pars=param_names)
theta_1 = chain_2.getMeans(pars=[chain_1.index[name]
for name in param_names])
theta_12 = chain_12.getMeans(pars=[chain_12.index[name]
for name in param_names])
KL_eig, KL_eigv = utils.KL_decomposition(C_p1, C_p12)
KL_eig
prior_factor = 1000.0
temp_C_p1 = utils.QR_inverse(utils.QR_inverse(C_p1) +prior_factor*utils.QR_inverse(C_Pi))
temp_C_p12 = utils.QR_inverse(utils.QR_inverse(C_p12) +prior_factor*utils.QR_inverse(C_Pi))
temp_theta_12 = np.dot(temp_C_p12,np.dot(theta_12,utils.QR_inverse(C_p12))+np.dot(theta_1,prior_factor*utils.QR_inverse(C_Pi)))
KL_eig_2, KL_eigv_2 = utils.KL_decomposition(temp_C_p1, temp_C_p12)
KL_eig_2
plt.plot(KL_eig)
plt.plot(KL_eig_2)
helper_stat(theta_1-theta_12, KL_eig,KL_eigv, 1.05)
helperplot(KL_eig,KL_eigv)
helper_stat(theta_1-temp_theta_12, KL_eig_2,KL_eigv_2, 1.05)
helperplot(KL_eig_2,KL_eigv_2)
def helper_stat(shift, eig, eigv, lower_cutoff):
upper_cutoff = 100.
_filter = np.logical_and(eig > lower_cutoff, eig < upper_cutoff)
Q_UDM = np.sum(np.dot(eigv.T, shift)[_filter]**2./(eig[_filter]-1.))
dofs = np.sum(_filter)
P = scipy.stats.chi2.cdf(Q_UDM, dofs)
return utils.from_confidence_to_sigma(P)
def helperplot(eig, eigv):
fish = np.sum(eigv*eigv/eig, axis=1)
fish = ((eigv*eigv/eig).T/fish).T
im1 = plt.imshow(fish, cmap='viridis')
num_params = len(fish)
for i in range(num_params):
for j in range(num_params):
if fish[j,i]>0.5:
col = 'k'
else:
col = 'w'
plt.text(i, j, np.round(fish[j,i],2), va='center', ha='center', color=col)
# label on the axis:
plt.xlabel('KL mode ($\\lambda^a-1$)');
plt.ylabel('Parameters');
# x axis:
ticks = np.arange(num_params)
labels = [ str(t+1)+'\n ('+str(l)+')' for t,l in zip(ticks,np.round(eig-1.,2))]
plt.xticks(ticks, labels, horizontalalignment='center')
labels = [ '$'+chain_12.getParamNames().parWithName(name).label+'$' for name in param_names ]
plt.yticks(ticks, labels, horizontalalignment='right')
plt.show()