-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmanager.py
424 lines (333 loc) · 15.4 KB
/
manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""
Main file used to generate Global IDs using multiple camera views
"""
from camera import Camera
from shapely.geometry import Polygon, box
import numpy as np
import pickle
import json
import multiprocessing as multiproc
# multiproc.set_start_method('fork') ## Context already set in camera.py
from disjoint_set import DisjointSet
from pigutils import annotate_frame
from collections import defaultdict, Counter
DEBUG = False
class CameraManager(multiproc.context.Process):
def __init__(self, angled_camera, ceil_camera, queue, total_pigs, pen_name, ceil_lag):
multiproc.context.Process.__init__(self)
assert isinstance(angled_camera, Camera) and isinstance(ceil_camera, Camera)
self.ceil_camera = ceil_camera
self.angled_camera = angled_camera
self.local_buffer = {
'ceiling': {}, 'angled': {}
}
self.warp_dict = {}
with open(f"data/homography/matrices-{pen_name}.pickle", "rb") as f:
self.H = pickle.load(f)
self.warp_dict['angled'] = pickle.load(f)
self.warp_dict['ceiling'] = pickle.load(f)
self.queue = queue
self.union_find = DisjointSet()
self.mapping_counter = Counter()
self.total_pigs = total_pigs
self.pigs_seen = 0
self.pen_name = pen_name
self.ceil_lag = ceil_lag
def get_global_ids(self):
return self.queue.get()
def ceiling_filter(self, ceil_tracks):
pop_list = []
for ceil_id in ceil_tracks:
xmin, _, xmax, _ = ceil_tracks[ceil_id]
box_center = (xmin + xmax)/2
if (box_center > 2010 and self.pen_name == "C") or (box_center <=2010 and self.pen_name == "B"):
pop_list.append(ceil_id)
for _id in pop_list:
ceil_tracks.pop(_id, None)
return ceil_tracks
def run(self):
ceil_done, angled_done = False, False
while not ceil_done and not angled_done:
fid, tracks = self.ceil_camera.get_tracks()
ceil_done = ceil_done or fid == -1
if not ceil_done:
self.local_buffer['ceiling'][fid+self.ceil_lag] = tracks
fid, tracks = self.angled_camera.get_tracks()
angled_done = angled_done or fid == -1
if not angled_done:
self.local_buffer['angled'][fid] = tracks
self.match_tracks_from_buffer()
with open("mapping.json", "w") as f:
json.dump(dict(self.mapping_counter), f)
print(self.mapping_counter)
print("Mapping Written")
self.queue.put((-1, None))
def match_tracks_from_buffer(self):
matching_fids = []
for fid in set(self.local_buffer['angled']).intersection(set(self.local_buffer['ceiling'])):
matching_fids.append(fid)
for fid in matching_fids:
global_position_dict = self.match_tracks(self.ceiling_filter(self.local_buffer['ceiling'].pop(fid, None)),
self.local_buffer['angled'].pop(fid, None))
self.queue.put((fid, global_position_dict))
def match_tracks(self, ceil_tracks, angled_tracks):
top_angled_to_angled = {}
for ceil_id in ceil_tracks:
## Ceil tracking ID has not been added to the disjoin set
# if self.union_find.find(ceil_id) == ceil_id:
ceil_to_topceil = self.transform_polygon(self.warp_dict['ceiling'], self.rectangle_to_polygon(ceil_tracks[ceil_id]))
top_ceil_to_top_angled = self.transform_polygon(np.linalg.inv(self.H), self.scale_polygon(ceil_to_topceil))
top_angled_to_angled[ceil_id] = self.transform_polygon(np.linalg.inv(self.warp_dict['angled']), top_ceil_to_top_angled)
angled_to_ceil, ceil_to_angled = self.generate_global_id(angled_tracks, top_angled_to_angled)
global_position_dict = {}
## Assign Pigs in the Angled view a global ID first (Cropped version to remove weak detections)
for angled_id in set(angled_tracks.keys()) - set(angled_to_ceil.keys()):
if not angled_id in self.union_find:
self.union_find.union(angled_id, self.pigs_seen)
self.pigs_seen += 1
global_id = self.union_find.find(angled_id)
global_position_dict[global_id] = (angled_tracks[angled_id], None)
## Assign Pigs in the Ceil view a global ID in the end (Cropped version??)
for ceil_id in set(ceil_tracks.keys()) - set(ceil_to_angled.keys()):
if not ceil_id in self.union_find:
self.union_find.union(ceil_id, self.pigs_seen)
self.pigs_seen += 1
global_id = self.union_find.find(ceil_id)
global_position_dict[global_id] = (None, ceil_tracks[ceil_id])
## Assign Pigs tracked by Homography a Global ID
for ceil_id, angled_id in ceil_to_angled.items():
self.mapping_counter[f"{ceil_id}-{angled_id}"] += 1
if angled_id in self.union_find:
if ceil_id in self.union_find:
## Both local IDs already exist and have a Global ID
## BUT, this can lead to ID merges. Two or more pigs can get assigned to the same ID
## So let's assign a completely new global ID now (Can be improved)
# common_id = min(self.union_find.find(ceil_id), self.union_find.find(angled_id))
# self.union_find.union(ceil_id, common_id)
# self.union_find.union(angled_id, common_id)
if self.union_find.find(ceil_id) != self.union_find.find(angled_id):
## TODO: Create custom reset function
min_id, max_id = sorted((self.union_find.find(ceil_id), self.union_find.find(angled_id)))
if min_id not in global_position_dict:
self.union_find.reset(ceil_id, min_id)
self.union_find.reset(angled_id, min_id)
else:
self.union_find.reset(ceil_id, max_id)
self.union_find.reset(angled_id, max_id)
else:
## Assign the Global ID of angled_id to ceil_id
self.union_find.union(ceil_id, self.union_find.find(angled_id))
else:
if ceil_id in self.union_find:
## Assign the Global ID of ceil_id to angled_id
self.union_find.union(angled_id, self.union_find.find(ceil_id))
else:
## Assign a unique ID to both of them
self.union_find.union(ceil_id, self.pigs_seen)
self.union_find.union(angled_id, self.pigs_seen)
self.pigs_seen += 1
global_id = self.union_find.find(angled_id)
global_position_dict[global_id] = (angled_tracks[angled_id], ceil_tracks[ceil_id])
if DEBUG:
print(list(self.union_find.itersets()))
print(global_position_dict)
return global_position_dict
def generate_global_id(self, angled_tracks, top_angled_to_angled):
if len(top_angled_to_angled) == 0:
return {}, {}
c2idx, idx2c, a2idx, idx2a = {}, {}, {}, {}
overlap_matrix = []
original_boxes = []
for pig_id in angled_tracks:
a2idx[pig_id] = len(original_boxes)
idx2a[len(original_boxes)] = pig_id
original_boxes.append(box(*angled_tracks[pig_id]))
for pig_id in top_angled_to_angled:
c2idx[pig_id] = len(overlap_matrix)
idx2c[len(overlap_matrix)] = pig_id
poly = Polygon(list(top_angled_to_angled[pig_id].values()))
overlap_matrix.append([o.intersection(poly).area for o in original_boxes])
matrix = np.array(overlap_matrix)
mapped_transformations = set()
angled_to_ceil, ceil_to_angled = {}, {}
while True:
## Get maximum
c, a = np.unravel_index(matrix.argmax(), matrix.shape)
## If we have matched all transformations, then exit
if matrix[c,a] == 0:
# print("Matching done")
break
## Set max value to 0 so that we don'c come across this again
matrix[:,a] = 0
## Check if we have already mapped c with a better ID
if c in mapped_transformations:
continue
mapped_transformations.add(c)
if DEBUG:
print("Angled ID: %s associated with Ceiling ID: %s"%(idx2a[a], idx2c[c]))
angled_to_ceil[idx2a[a]] = idx2c[c]
ceil_to_angled[idx2c[c]] = idx2a[a]
return angled_to_ceil, ceil_to_angled
@staticmethod
def transform_polygon(H, poly_dict):
"""
H : 3x3 matrix
poly_dict : {"tl": [x1, y1], ...}
new_poly_dict : {"tl": [H(x1, y1)], ...}
"""
new_poly_dict = {}
for pos, old_p in poly_dict.items():
new_p = np.matmul(H, np.array(old_p + [1]))
new_poly_dict[pos] = [int(new_p[0]/new_p[2]), int(new_p[1]/new_p[2])]
return new_poly_dict
@staticmethod
def rectangle_to_polygon(corners):
xmin, ymin, xmax, ymax = corners
poly_dict = {
"tl" : [xmin, ymin],
"tr" : [xmax, ymin],
"br" : [xmax, ymax],
"bl" : [xmin, ymax]
}
return poly_dict
def scale_polygon(self, poly_dict, ceil_to_pen=True):
if self.pen_name == "C":
if ceil_to_pen:
return {pos: [int(x*1443/1578), int(y*578/1712)] for pos, [x, y] in poly_dict.items()}
else:
return {pos: [int(x*1578/1443), int(y*1712/578)] for pos, [x, y] in poly_dict.items()}
if self.pen_name == "B":
if ceil_to_pen:
return {pos: [int(x*1545/1352), int(y*645/1317)] for pos, [x, y] in poly_dict.items()}
else:
return {pos: [int(x*1352/1545), int(y*1317/645)] for pos, [x, y] in poly_dict.items()}
if __name__ == '__main__':
import cv2
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser(description = "Annotate videos based on Multi-Camera annotations")
parser.add_argument('--av', required=True, help="Angled video stream")
parser.add_argument('--aj', required=True, help="Angled video json")
parser.add_argument('--cv', required=True, help="Ceiling video stream")
parser.add_argument('--cj', required=True, help="Ceiling video json")
parser.add_argument('--cl', required=True, type=int, help="Ceiling Lag (in terms of frames)")
args = parser.parse_args()
## Initialize Camera
aq, cq = multiproc.Queue(), multiproc.Queue()
angled_camera = Camera(None, aq, track_prefix="a", simulation_file=args.aj)
ceiling_camera = Camera(None, cq, track_prefix="c", simulation_file=args.cj)
angled_camera.start(); ceiling_camera.start();
## Initialize Camera Manager
PEN_NAME = "B" if "B" in args.aj else "C"
TOTAL_PIGS = 17 if PEN_NAME == "B" else 16
cmq = multiproc.Queue()
camera_manager = CameraManager(angled_camera, ceiling_camera, cmq, total_pigs=TOTAL_PIGS, pen_name=PEN_NAME, ceil_lag=args.cl)
camera_manager.start()
cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0, 1, TOTAL_PIGS)]
f = 3
w, h = int(f*1280), int(f*360)
print(w,h)
angled_cap = cv2.VideoCapture(args.av)
ceiling_cap = cv2.VideoCapture(args.cv)
out = cv2.VideoWriter('multi-tracking.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 15, (w, h))
## Remove initial 30 frames to match offset
for i in range(args.cl):
angled_cap.read()
angled_output_dict = {
"videoFileName": args.av,
"fullVideoFilePath": args.av,
"stepSize": 0.1,
"config": {
"stepSize": 0.1,
"playbackRate": 0.4,
"imageMimeType": "image/jpeg",
"imageExtension": ".jpg",
"framesZipFilename": "extracted-frames.zip",
"consoleLog": "0"
},
"objects":[]
}
ceiling_output_dict = {
"videoFileName": args.cv,
"fullVideoFilePath": args.cv,
"stepSize": 0.1,
"config": {
"stepSize": 0.1,
"playbackRate": 0.4,
"imageMimeType": "image/jpeg",
"imageExtension": ".jpg",
"framesZipFilename": "extracted-frames.zip",
"consoleLog": "0"
},
"objects":[]
}
angled_id_frames, ceiling_id_frames = defaultdict(list), defaultdict(list)
while True:
frame_id, global_position_dict = camera_manager.get_global_ids()
ret1, angled_frame = angled_cap.read()
ret2, ceil_frame = ceiling_cap.read()
if frame_id == -1 or not ret1 or not ret2:
break
for pig_id in global_position_dict:
angled_box, ceil_box = global_position_dict[pig_id]
if angled_box is not None:
annotate_frame(angled_frame, pig_id, angled_box, colors, activity=None)
xmin, ymin, xmax, ymax = angled_box
x = int((xmin+xmax)/2)
y = int((ymin+ymax)/2)
width, height = int(xmax-xmin), int(ymax-ymin)
angled_id_frames[pig_id].append({
"frameNumber": frame_id,
"bbox": {
"x": x,
"y": y,
"width": width,
"height": height
},
"isGroundTruth": "1",
"visible": "1",
"behaviour": "other"
})
if ceil_box is not None:
annotate_frame(ceil_frame, pig_id, ceil_box, colors, activity=None)
xmin, ymin, xmax, ymax = ceil_box
x = int((xmin+xmax)/2)
y = int((ymin+ymax)/2)
width, height = int(xmax-xmin), int(ymax-ymin)
ceiling_id_frames[pig_id].append({
"frameNumber": frame_id-args.cl,
"bbox": {
"x": x,
"y": y,
"width": width,
"height": height
},
"isGroundTruth": "1",
"visible": "1",
"behaviour": "other"
})
# cv2.putText(angled_frame, "Frame ID: %d"%frame_id, (20, 100), 0, 3, (0,0,255), 10)
stacked_frames = cv2.resize(np.hstack((ceil_frame, angled_frame)), (w, h))
cv2.imshow("Multi Camera Tracking", stacked_frames)
out.write(stacked_frames)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
for pig_id, frames in angled_id_frames.items():
angled_output_dict["objects"].append({
"frames": frames,
"id": pig_id
})
for pig_id, frames in ceiling_id_frames.items():
ceiling_output_dict["objects"].append({
"frames": frames,
"id": pig_id
})
with open("angled.json", "w") as f:
json.dump(angled_output_dict, f)
with open("ceiling.json", "w") as f:
json.dump(ceiling_output_dict, f)
print("Done")
angled_camera.join()
ceiling_camera.join()
camera_manager.join()