-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcnn.py
262 lines (222 loc) · 9.35 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import json
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import *
import numpy as np
import sys
sys.path.append('../tools')
import parse, py_op
output_size = 1
def value_embedding_data(d = 200, split = 200):
vec = np.array([np.arange(split) * i for i in range(int(d/2))], dtype=np.float32).transpose()
vec = vec / vec.max()
embedding = np.concatenate((np.sin(vec), np.cos(vec)), 1)
embedding[0, :d] = 0
embedding = torch.from_numpy(embedding)
return embedding
def conv3(in_channels, out_channels, stride=1, kernel_size=3):
return nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size,
stride=stride, padding=1, bias=False)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3(out_channels, out_channels)
self.bn2 = nn.BatchNorm1d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class CNN(nn.Module):
def __init__(self, args):
super(CNN, self).__init__()
self.args = args
if args.value_embedding == 'no':
self.embedding = nn.Linear(args.input_size, args.embed_size)
else:
self.embedding = nn.Embedding (args.vocab_size, args.embed_size )
self.dd_embedding = nn.Embedding (args.n_ehr, args.embed_size )
self.value_embedding = nn.Embedding.from_pretrained(value_embedding_data(args.embed_size, args.split_num + 1))
self.value_mapping = nn.Sequential(
nn.Linear ( args.embed_size * 2, args.embed_size),
nn.ReLU ( ),
nn.Dropout ( 0.1),
)
self.dd_mapping = nn.Sequential(
nn.Linear ( args.embed_size, args.embed_size),
nn.ReLU ( ),
nn.Dropout(0.1),
nn.Linear ( args.embed_size, args.embed_size),
nn.ReLU ( ),
nn.Dropout(0.1),
)
self.dx_mapping = nn.Sequential(
nn.Linear ( args.embed_size * 2, args.embed_size),
nn.ReLU ( ),
nn.Linear ( args.embed_size, args.embed_size),
nn.ReLU ( ),
)
self.tv_mapping = nn.Sequential (
nn.Linear ( args.embed_size * 2, args.embed_size),
nn.ReLU ( ),
nn.Linear ( args.embed_size, args.embed_size),
nn.ReLU ( ),
nn.Dropout ( 0.1),
)
self.relu = nn.ReLU ( )
lstm_size = args.rnn_size
lstm_size *= 2
self.output_mapping = nn.Sequential (
nn.Linear (lstm_size, args.rnn_size),
nn.ReLU ( ),
nn.Linear (args.rnn_size, args.rnn_size),
nn.ReLU ( )
)
self.cat_output = nn.Sequential (
nn.Linear (args.rnn_size * 2, args.rnn_size),
nn.ReLU ( ),
nn.Dropout ( 0.1),
nn.Linear ( args.rnn_size, output_size),
)
self.output = nn.Sequential (
nn.Linear (args.rnn_size, args.rnn_size),
nn.ReLU ( ),
nn.Dropout ( 0.1),
nn.Linear ( args.rnn_size, output_size),
)
self.pooling = nn.AdaptiveMaxPool1d(1)
layers = [1, 2, 2]
embed_size = args.embed_size
block = ResidualBlock
self.in_channels = embed_size
self.bn1 = nn.BatchNorm1d(embed_size)
self.bn2 = nn.BatchNorm1d(embed_size)
self.bn3 = nn.BatchNorm1d(embed_size)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, embed_size, layers[0], 2)
self.layer2 = self.make_layer(block, embed_size, layers[1], 2)
self.layer3 = self.make_layer(block, embed_size, layers[2], 2)
# unstructure
if args.use_unstructure:
self.vocab_embedding = nn.Embedding (args.unstructure_size+10, args.embed_size )
# self.vocab_layer = self.make_layer(block, embed_size, layers[0], 2)
self.vocab_layer = nn.Sequential(
nn.Dropout(0.2),
conv3(embed_size, embed_size, 2, 2),
nn.BatchNorm1d(embed_size),
nn.Dropout(0.2),
nn.ReLU(),
# conv3(embed_size, embed_size, 2, 3),
# nn.BatchNorm1d(embed_size),
# nn.Dropout(0.1),
# nn.ReLU(),
# conv3(embed_size, embed_size, 2, 3),
# nn.BatchNorm1d(embed_size),
# nn.Dropout(0.1),
# nn.ReLU(),
)
self.vocab_output = nn.Sequential (
nn.ReLU ( ),
nn.Dropout ( 0.1),
nn.Linear (args.embed_size * 3, 3 * args.embed_size),
nn.ReLU ( ),
nn.Dropout ( 0.1),
nn.Linear ( 3 * args.embed_size, output_size),
)
self.one_output = nn.Sequential (
# nn.Linear (args.embed_size * 3, args.embed_size),
# nn.ReLU ( ),
nn.Dropout ( 0.1),
nn.Linear ( args.embed_size, output_size),
)
def visit_pooling(self, x):
output = x
size = output.size()
output = output.view(size[0] * size[1], size[2], output.size(3)) # (64*30, 13, 200)
output = torch.transpose(output, 1,2).contiguous() # (64*30, 200, 13)
output = self.pooling(output) # (64*30, 200, 1)
output = output.view(size[0], size[1], size[3]) # (64, 30, 200)
return output
def value_order_embedding(self, x):
size = list(x[0].size()) # (64, 30, 13)
index, value = x
xi = self.embedding(index.view(-1)) # (64*30*13, 200)
# xi = xi * (value.view(-1).float() + 1.0 / self.args.split_num)
xv = self.value_embedding(value.view(-1)) # (64*30*13, 200)
x = torch.cat((xi, xv), 1) # (64*30*13, 1024)
x = self.value_mapping(x) # (64*30*13, 200)
size.append(-1)
x = x.view(size) # (64, 30, 13, 200)
return x
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = nn.Sequential(
conv3(self.in_channels, out_channels, stride=stride),
nn.BatchNorm1d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x, t, dd, content=None):
if content is not None:
# content = self.vocab_embedding(content).transpose(1,2)
content = self.vocab_layer(content.transpose(1,2))
content = self.pooling(content) # (64*30, 200, 1)
content = content.view((content.size(0), -1))
return self.one_output(content)
# value embedding
x = self.value_order_embedding(x)
x = self.visit_pooling(x)
# time embedding
# t = self.value_embedding(t)
# x = self.tv_mapping(torch.cat((x, t), 2))
# cnn
x = torch.transpose(x, 1, 2,).contiguous()
out = self.bn1(x)
out = self.relu(out)
out = self.layer1(out)
# out = self.layer2(out)
# out = self.layer3(out)
output = self.pooling(out) # (64*30, 200, 1)
output = output.view((output.size(0), -1))
if len(dd.size()) > 1:
# demo embedding
dsize = list(dd.size()) + [-1]
d = self.dd_embedding(dd.view(-1)).view(dsize)
d = self.dd_mapping(d)
d = torch.transpose(d, 1,2).contiguous() # (64*30, 200, 100)
d = self.pooling(d)
d = d.view((d.size(0), -1))
output = torch.cat((output, d), 1)
out = self.cat_output(output)
# else:
# out = self.output(output)
if content is not None:
# content = self.vocab_embedding(content)
content = self.vocab_layer(content.transpose(1,2))
content = self.pooling(content) # (64*30, 200, 1)
content = content.view((content.size(0), -1))
# content = self.one_output(content) + 0.3 * out
# out = content + out
# out = content
output = torch.cat((output, content), 1)
out = self.vocab_output(output)
return out