-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_to_ds_params.py
180 lines (163 loc) · 6.35 KB
/
convert_to_ds_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import json
import os
import shutil
import torch
INTERMEDIATE_SIZE_MAP = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
}
NUM_SHARDS = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
def read_json(path):
with open(path, "r") as f:
return json.loads(f.read())
def write_model(model_path, input_base_path, model_size):
assert model_size in INTERMEDIATE_SIZE_MAP
os.makedirs(model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
filename_format = "layer_{:02d}-model_states.pt"
# permute for sliced rotary
def permute(w):
return w.view(
n_heads_per_shard, dim // n_heads_per_shard // 2, 2, dim
).transpose(1, 2).reshape(
dim, dim
)
# Load weights
if model_size == "7B":
# Not shared
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
for i in range(num_shards)
]
for layer_i in range(n_layers):
filename = filename_format.format(layer_i + 1)
if model_size == "7B":
# Unsharded
state_dict = {
"attention.wq.weight": permute(loaded[f"layers.{layer_i}.attention.wq.weight"]),
"attention.wk.weight": permute(loaded[f"layers.{layer_i}.attention.wk.weight"]),
"attention.wv.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
"attention.wo.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
"feed_forward.w1.weight": loaded[
f"layers.{layer_i}.feed_forward.w1.weight"
],
"feed_forward.w2.weight": loaded[
f"layers.{layer_i}.feed_forward.w2.weight"
],
"feed_forward.w3.weight": loaded[
f"layers.{layer_i}.feed_forward.w3.weight"
],
"attention_norm.weight": loaded[
f"layers.{layer_i}.attention_norm.weight"
],
"ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
state_dict = {
"attention_norm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"],
"ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"],
}
state_dict["attention.wq.weight"] = permute(torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim))
state_dict["attention.wk.weight"] = permute(torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim))
state_dict["attention.wv.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict["attention.wo.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
).clone()
state_dict["feed_forward.w1.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
).clone()
state_dict["feed_forward.w2.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
).clone()
state_dict["feed_forward.w3.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
).clone()
state_dict = {k: v.clone() for k, v in state_dict.items()}
torch.save(state_dict, os.path.join(model_path, filename))
if model_size == "7B":
# Unsharded
torch.save(
{"tok_embeddings.weight": loaded["tok_embeddings.weight"].clone()},
os.path.join(model_path, filename_format.format(0)),
)
torch.save(
{
"norm.weight": loaded["norm.weight"].clone(),
"output.weight": loaded["output.weight"].clone(),
},
os.path.join(model_path, filename_format.format(n_layers + 1)),
)
else:
# Sharded
torch.save(
{"tok_embeddings.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
)},
os.path.join(model_path, filename_format.format(0)),
)
torch.save(
{
"norm.weight": loaded[0]["norm.weight"],
"output.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
},
os.path.join(model_path, filename_format.format(n_layers + 1)),
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "13B", "30B", "65B"],
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
args = parser.parse_args()
write_model(
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
input_base_path=os.path.join(args.input_dir, args.model_size),
model_size=args.model_size,
)
if __name__ == "__main__":
main()