-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenize_dataset.py
62 lines (48 loc) · 1.83 KB
/
tokenize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import json
import numpy as np
import random
import tqdm.auto as tqdm
import datasets
import transformers
def read_jsonl(path):
# Manually open because .splitlines is different from iterating over lines
with open(path, "r") as f:
for line in f:
yield json.loads(line)
def read_lm_dataformat(path):
import lm_dataformat
reader = lm_dataformat.Reader(path)
yield from reader.stream_data()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--tokenizer_path", type=str)
parser.add_argument("--data_path", type=str)
parser.add_argument("--data_format", type=str, default="jsonl")
parser.add_argument("--save_path", type=str)
parser.add_argument("--max_seq_length", type=int, default=2048)
args = parser.parse_args()
tokenizer = transformers.LlamaTokenizer.from_pretrained(args.tokenizer_path)
all_tokenized = []
if args.data_format == "jsonl":
reader = read_jsonl(args.data_path)
elif args.data_format == "lm_dataformat":
reader = read_lm_dataformat(args.data_path)
else:
raise KeyError(args.data_format)
for elem in tqdm.tqdm(reader):
text = elem["text"] if args.data_format == "jsonl" else elem
all_tokenized.append(tokenizer.encode(text))
random.shuffle(all_tokenized)
all_tokens = [tokenizer.bos_token_id] + [
tok
for row in all_tokenized
for tok in row + [tokenizer.eos_token_id, tokenizer.bos_token_id]
]
truncated_tokens = all_tokens[:(len(all_tokens) // args.max_seq_length) * args.max_seq_length]
arr = np.array(truncated_tokens).reshape(-1, args.max_seq_length)
ds = datasets.Dataset.from_dict({"input_ids": arr})
ds.save_to_disk(args.save_path)
print(f"Generated {arr.shape[0]} samples.")
if __name__ == "__main__":
main()