forked from sudarshan-koirala/langchain-openai-chainlit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf_qa.py
163 lines (125 loc) · 4.73 KB
/
pdf_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Import necessary modules and define env variables
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
import os
import io
import chainlit as cl
import PyPDF2
from io import BytesIO
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
OPENAI_API_KEY= os.getenv("OPENAI_API_KEY")
# text_splitter and system template
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
system_template = """Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
Example of your response should be:
```
The answer is foo
SOURCES: xyz
```
Begin!
----------------
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
@cl.on_chat_start
async def on_chat_start():
# Sending an image with the local file path
elements = [
cl.Image(name="image1", display="inline", path="./robot.jpeg")
]
await cl.Message(content="Hello there, Welcome to AskAnyQuery related to Data!", elements=elements).send()
files = None
# Wait for the user to upload a PDF file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
# Read the PDF file
pdf_stream = BytesIO(file.content)
pdf = PyPDF2.PdfReader(pdf_stream)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
# Split the text into chunks
texts = text_splitter.split_text(pdf_text)
# Create metadata for each chunk
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
# Create a Chroma vector store
embeddings = OpenAIEmbeddings()
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
# Create a chain that uses the Chroma vector store
chain = RetrievalQAWithSourcesChain.from_chain_type(
ChatOpenAI(temperature=0),
chain_type="stuff",
retriever=docsearch.as_retriever(),
)
# Save the metadata and texts in the user session
cl.user_session.set("metadatas", metadatas)
cl.user_session.set("texts", texts)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message:str):
chain = cl.user_session.get("chain") # type: RetrievalQAWithSourcesChain
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message, callbacks=[cb])
answer = res["answer"]
sources = res["sources"].strip()
source_elements = []
# Get the metadata and texts from the user session
metadatas = cl.user_session.get("metadatas")
all_sources = [m["source"] for m in metadatas]
texts = cl.user_session.get("texts")
if sources:
found_sources = []
# Add the sources to the message
for source in sources.split(","):
source_name = source.strip().replace(".", "")
# Get the index of the source
try:
index = all_sources.index(source_name)
except ValueError:
continue
text = texts[index]
found_sources.append(source_name)
# Create the text element referenced in the message
source_elements.append(cl.Text(content=text, name=source_name))
if found_sources:
answer += f"\nSources: {', '.join(found_sources)}"
else:
answer += "\nNo sources found"
if cb.has_streamed_final_answer:
cb.final_stream.elements = source_elements
await cb.final_stream.update()
else:
await cl.Message(content=answer, elements=source_elements).send()