-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
159 lines (133 loc) · 6.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import os
import shutil
import sys
import logging
from typing import Any
from mmcv import Config
from utils.logger import Logger
from utils.summit_dataloader import SummitBaselineDataset
logging.basicConfig(format='%(levelname)s-%(message)s', level=logging.DEBUG)
printer = logging.getLogger('train')
def parse_args():
parser = argparse.ArgumentParser(description="Training a motion prediction model")
parser.add_argument('config', help='training config file')
parser.add_argument('--resume-from', help='the checkpoint file to resume from')
parser.add_argument('--work-dir',
help= 'the directory to save the file containing training metrics and checkpoints')
parser.add_argument(
'--gpu-id',
type=int,
default=0,
help='id of gpu to use '
'(only applicable to non-distributed training)')
args = parser.parse_args()
return args
def check_args(args: Any) -> bool:
work_dir = args.work_dir
checkpoint = args.resume_from
return True
def construct_model(cfg, logger):
# To avoid python version conflicts library, we only import the model based on the name
model_name = cfg.model.type
model = None
if model_name == "ConstantVelocity":
from model.argoverse_baseline.constant_velocity import ConstantVelocity
model = ConstantVelocity(config=cfg, logger=logger)
if model_name == "ConstantAcceleration":
from model.argoverse_baseline.constant_acceleration import ConstantAcceleration
model = ConstantAcceleration(config=cfg, logger=logger)
if model_name == "KNearestNeighbor":
from model.argoverse_baseline.knearest_neighbor import KNearestNeighbor
model = KNearestNeighbor(config=cfg, logger=logger)
if model_name == "SummitKNearestNeighbor":
from model.argoverse_baseline.summit_knn import SummitKNearestNeighbor
model = SummitKNearestNeighbor(config=cfg, logger=logger)
if model_name == "Gamma":
from model.gamma.gamma_wrapper import Gamma
model = Gamma(config=cfg, logger=logger)
if model_name == "LSTM":
from model.LSTM.lstm_wrapper import LSTM
model = LSTM(config=cfg, logger=logger)
if model_name == "LaneGCN":
from model.LaneGCN.lanegcn_wrapper import LaneGCN
model = LaneGCN(config=cfg, logger=logger)
if model_name == "HiVT":
from model.HiVT.hivt_wrapper import HiVT
model = HiVT(config=cfg, logger=logger)
if model_name == "DSP":
from model.DSP.DSP_wrapper import DSP
model = DSP(config=cfg, logger=logger)
if model_name == "HOME":
from model.HOME.src.home.home_wrapper import HOME
model = HOME(config=cfg, logger=logger)
return model
def construct_dataset(config):
'''
This method check builds dataset from raw_dir and save pickle file at features_path
cfg: Config class
'''
if config.data.dataset_type == "SummitDataset" and config.model.type not in ["LaneGCN", "HiVT", "HOME"]:
obs_len = config.model.obs_len
pred_len = config.model.pred_len
raw_train_dir = config.data.train.raw_dir
raw_val_dir = config.data.val.raw_dir
raw_test_dir = config.data.test.raw_dir
processed_dir_train = config.data.train.processed_dir
processed_dir_val = config.data.val.processed_dir
processed_dir_test = config.data.test.processed_dir
# Step 1. Check raw dir of each train/test/val and process
dataloader = SummitBaselineDataset(split="train", obs_len= obs_len,
pred_len = pred_len,
raw_train_dir = raw_train_dir,
raw_val_dir = raw_val_dir,
raw_test_dir = raw_test_dir,
processed_dir=processed_dir_train)
# Step 2. We store merged files to features (overwrite any features file beforehand)
dataloader.merge_saved_features(config.data.train.features)
print(f"Done processing {raw_train_dir} and store in {config.data.train.features}")
# Step 3. Do the same for val
dataloader = SummitBaselineDataset(split="val", obs_len=obs_len,
pred_len=pred_len,
raw_train_dir=raw_train_dir,
raw_val_dir=raw_val_dir,
raw_test_dir=raw_test_dir,
processed_dir=processed_dir_val)
dataloader.merge_saved_features(config.data.val.features)
print(f"Done processing {raw_val_dir} and store in {config.data.val.features}")
# Use 'val' for 'testmode' so that it contains candidate centerlines
dataloader = SummitBaselineDataset(split="test", obs_len=obs_len,
pred_len=pred_len,
raw_train_dir=raw_train_dir,
raw_val_dir=raw_val_dir,
raw_test_dir=raw_test_dir,
processed_dir=processed_dir_test)
dataloader.merge_saved_features(config.data.test.features)
print(f"Done processing {raw_test_dir} in test mode and store in {config.data.test.features}")
elif config.data.dataset_type == "ArgoverseDataset" and config.model.type not in ["LaneGCN", "HiVT", "HOME"]:
# For ArgoverseDataset, the file must exists for features
# If no test features, run python compute_features.py --data_dir ../datasets/val/data/ --feature_dir ../features/forecasting_features/ --mode test --name val_testmode
assert os.path.isfile(config.data.train.features), f"No train features file at {config.data.train.features}"
assert os.path.isfile(config.data.val.features), f"No val features file at {config.data.val.features}"
assert os.path.isfile(config.data.test.features), f"No test features file at {config.data.test.features}"
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if not check_args(args):
return
# Initialize logger path
exp_name = cfg.filename.split('/')[-1].split('.')[0]
if args.work_dir:
work_dir = args.work_dir
else: # if not work_dir, default is in work_dirs/config_file/yyyy-mm-dd_hh-mm-ss_config_file/
work_dir = cfg.work_dir
logger = Logger(work_dir=work_dir, exp_name=exp_name, hyperparams=cfg, mode="train", printer=printer)
printer.info(f"Training {cfg.model.type}\n"
f"Loading configuration files f{args.config}\n")
if args.resume_from:
printer.info(f'Resuming training from {args.resum_frome}')
construct_dataset(cfg)
model = construct_model(cfg, logger)
model.train()
if __name__ == "__main__":
main()