-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
255 lines (211 loc) · 12.7 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import tensorflow as tf
import numpy as np
import sys
def losses(loss_type, output_fake, output_real, logits_fake, logits_real, real_images=None, fake_images=None, discriminator=None, init=None, gp_coeff=None, mean_c_x_fake=None,
logs2_c_x_fake=None, input_c=None, delta=1, display=True):
# Variable to track which loss function is actually used.
loss_print = ''
if 'relativistic' in loss_type:
logits_diff_real_fake = logits_real - tf.reduce_mean(logits_fake, axis=0, keepdims=True)
logits_diff_fake_real = logits_fake - tf.reduce_mean(logits_real, axis=0, keepdims=True)
loss_print += 'relativistic '
if 'standard' in loss_type:
# Discriminator loss.
loss_dis_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake, labels=tf.ones_like(logits_fake)))
loss_dis_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real, labels=tf.zeros_like(logits_fake)))
loss_dis = loss_dis_real + loss_dis_fake
# Generator loss.
loss_gen_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real, labels=tf.ones_like(logits_fake)))
loss_gen_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake, labels=tf.zeros_like(logits_fake)))
loss_gen = loss_gen_real + loss_gen_fake
loss_print += 'standard '
elif 'least square' in loss_type:
# Discriminator loss.
loss_dis_real = tf.reduce_mean(tf.square(logits_diff_real_fake-1.0))
loss_dis_fake = tf.reduce_mean(tf.square(logits_diff_fake_real+1.0))
loss_dis = loss_dis_real + loss_dis_fake
# Generator loss.
loss_gen_real = tf.reduce_mean(tf.square(logits_diff_fake_real-1.0))
loss_gen_fake = tf.reduce_mean(tf.square(logits_diff_real_fake+1.0))
loss_gen = loss_gen_real + loss_gen_fake
loss_print += 'least square '
elif 'gradient penalty' in loss_type:
# Calculating X hat.
epsilon = tf.random.uniform(shape=tf.stack([tf.shape(real_images)[0], 1, 1, 1]), minval=0.0, maxval=1.0, dtype=tf.float32, name='epsilon')
x_gp = real_images*(1-epsilon) + fake_images*epsilon
out = discriminator(x_gp, True, init=init)
logits_gp = out[1]
# Calculating Gradient Penalty.
grad_gp = tf.gradients(logits_gp, x_gp)
l2_grad_gp = tf.sqrt(tf.reduce_sum(tf.square(grad_gp), axis=[1, 2, 3]))
grad_penalty= tf.reduce_sum(tf.square(l2_grad_gp-1.0))
# Discriminator loss.
loss_dis_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake, labels=tf.ones_like(logits_fake)))
loss_dis_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real, labels=tf.zeros_like(logits_fake)))
loss_dis = loss_dis_real + loss_dis_fake + (gp_coeff*grad_penalty)
# Generator loss.
loss_gen_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real, labels=tf.ones_like(logits_fake)))
loss_gen_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake, labels=tf.zeros_like(logits_fake)))
loss_gen = loss_gen_real + loss_gen_fake
loss_print += 'gradient penalty '
elif 'standard' in loss_type:
# Discriminator loss. Uses hinge loss on discriminator.
loss_dis_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=tf.zeros_like(output_fake)))
loss_dis_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_real, labels=tf.ones_like(output_fake)*0.9))
loss_dis = loss_dis_fake + loss_dis_real
# Generator loss.
# This is where we implement -log[D(G(z))] instead log[1-D(G(z))].
# Recall the implementation of cross-entropy, sign already in.
loss_gen = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=tf.ones_like(output_fake)))
loss_print += 'standard '
elif 'least square' in loss_type:
# Discriminator loss.
loss_dis_fake = tf.reduce_mean(tf.square(output_fake))
loss_dis_real = tf.reduce_mean(tf.square(output_real-1.0))
loss_dis = 0.5*(loss_dis_fake + loss_dis_real)
# Generator loss.
loss_gen = 0.5*tf.reduce_mean(tf.square(output_fake-1.0))
loss_print += 'least square '
elif 'wasserstein distance' in loss_type:
# Discriminator loss.
loss_dis_real = tf.reduce_mean(logits_real)
loss_dis_fake = tf.reduce_mean(logits_fake)
loss_dis = -loss_dis_real + loss_dis_fake
loss_print += 'wasserstein distance '
# Generator loss.
loss_gen = -loss_dis_fake
if 'gradient penalty' in loss_type:
# Calculating X hat.
epsilon = tf.random.uniform(shape=tf.stack([tf.shape(real_images)[0], 1, 1, 1]), minval=0.0, maxval=1.0, dtype=tf.float32, name='epsilon')
x_gp = real_images*(1-epsilon) + fake_images*epsilon
out = discriminator(x_gp, True, init=init)
logits_gp = out[1]
# Calculating Gradient Penalty.
grad_gp = tf.gradients(logits_gp, x_gp)
l2_grad_gp = tf.sqrt(tf.reduce_sum(tf.square(grad_gp), axis=[1, 2, 3]))
grad_penalty= tf.reduce_sum(tf.square(l2_grad_gp-1.0))
loss_dis += (gp_coeff*grad_penalty)
loss_print += 'gradient penalty '
elif 'hinge' in loss_type:
loss_dis_real = tf.reduce_mean(tf.maximum(tf.zeros_like(logits_real), tf.ones_like(logits_real) - logits_real))
loss_dis_fake = tf.reduce_mean(tf.maximum(tf.zeros_like(logits_real), tf.ones_like(logits_real) + logits_fake))
loss_dis = loss_dis_fake + loss_dis_real
loss_gen = -tf.reduce_mean(logits_fake)
loss_print += 'hinge '
else:
print('Loss: Loss %s not defined' % loss_type)
sys.exit(1)
if 'infogan' in loss_type:
epsilon = 1e-9
c_sigma2 = tf.exp(logs2_c_x_fake)
log_sigma2 = tf.log(c_sigma2 + epsilon)
mean_sq_diff = (input_c - mean_c_x_fake)**2
last = mean_sq_diff/(c_sigma2 + epsilon)
mututal_loss = tf.reduce_mean(-0.5*(tf.log(2*np.pi)+log_sigma2+last))
loss_dis -= delta*mututal_loss
loss_gen -= delta*mututal_loss
loss_print += 'infogan '
if display:
print('[Loss] Loss %s' % loss_print)
if 'infogan' in loss_type:
return loss_dis, loss_gen, mututal_loss
return loss_dis, loss_gen
def vae_loss(mean_z_xi, logs2_z_xi, vae_downsample, lr_mean_xi_z, lr_logs2_xi_z):
# VAE Loss.
e=1
# KL Divergence.
z_s2 = tf.exp(logs2_z_xi)
z_log_s2 = tf.log(z_s2 + e)
mean_z2 = tf.square(mean_z_xi)
kl_divergence = -.5*tf.reduce_sum(1 + z_log_s2 - mean_z2 - z_s2, axis=-1)
loss_prior = -tf.reduce_mean( -kl_divergence, axis=-1)
# Reconstruction error from enconding space datapoint.
x_s2 = tf.exp(lr_logs2_xi_z)
exp_log_s2 = tf.square(vae_downsample - lr_mean_xi_z)/(e + x_s2)
se = tf.log(2*np.pi) + tf.log(e + x_s2) + exp_log_s2
sampling_expt = tf.reduce_sum(-.5*se, axis=[1,2,3])
loss_dist_likel = -tf.reduce_mean(sampling_expt, axis=[-1])
return loss_prior, loss_dist_likel
def vaegan_loss(loss_type, output_fake_vae, output_fake_gan, output_real, logits_fake_vae, logits_fake_gan, logits_real, vae, real_images, fake_images=None, discriminator=None,
gp_coeff=None, display=True):
# Variable to track which loss function is actually used.
loss_print = ''
if 'relativistic' in loss_type:
logits_diff_real_fake_gan = logits_real - tf.reduce_mean(logits_fake_gan, axis=0, keepdims=True)
logits_diff_fake_real_gan = logits_fake_gan - tf.reduce_mean(logits_real, axis=0, keepdims=True)
logits_diff_real_fake_vae = logits_real - tf.reduce_mean(logits_fake_vae, axis=0, keepdims=True)
logits_diff_fake_real_vae = logits_fake_vae - tf.reduce_mean(logits_real, axis=0, keepdims=True)
loss_print += 'relativistic '
if 'standard' in loss_type:
# Discriminator loss.
#Usual GAN loss.
loss_dis_real_gan = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake_gan, labels=tf.ones_like(logits_fake_gan)))
loss_dis_fake_gan = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real_gan, labels=tf.zeros_like(logits_fake_gan)))
#VAE generation.
loss_dis_real_vae = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake_vae, labels=tf.ones_like(logits_fake_vae)))
loss_dis_fake_vae = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real_vae, labels=tf.zeros_like(logits_fake_vae)))
loss_dis = (loss_dis_real_gan + loss_dis_fake_gan) + (loss_dis_real_vae + loss_dis_fake_vae)
# Generator loss.
#Usual GAN loss.
loss_gen_real_gan = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real_gan, labels=tf.ones_like(logits_fake_gan)))
loss_gen_fake_gan = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake_gan, labels=tf.zeros_like(logits_fake_gan)))
#VAE generation.
loss_gen_real_vae = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_fake_real_vae, labels=tf.ones_like(logits_fake_vae)))
loss_gen_fake_vae = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_diff_real_fake_vae, labels=tf.zeros_like(logits_fake_vae)))
loss_gen = (loss_gen_real_gan + loss_gen_fake_gan) + (loss_gen_real_vae + loss_gen_fake_vae)
loss_print += 'standard '
if 'gradient penalty' in loss_type:
# Calculating X hat.
epsilon = tf.random.uniform(shape=tf.stack([tf.shape(real_images)[0], 1, 1, 1]), minval=0.0, maxval=1.0, dtype=tf.float32, name='epsilon')
x_gp = real_images*(1-epsilon) + fake_images*epsilon
out = discriminator(images=x_gp, reuse=True)
logits_gp = out[1]
# Calculating Gradient Penalty.
grad_gp = tf.gradients(logits_gp, x_gp)
l2_grad_gp = tf.sqrt(tf.reduce_sum(tf.square(grad_gp), axis=[1, 2, 3]))
grad_penalty= tf.reduce_sum(tf.square(l2_grad_gp-1.0))
# Discriminator loss.
loss_dis += (gp_coeff*grad_penalty)
loss_print += 'gradient penalty '
elif 'wasserstein distance' in loss_type:
# Discriminator loss.
loss_dis_real = tf.reduce_mean(logits_real)
loss_dis_fake = tf.reduce_mean(logits_fake)
loss_dis_fake_vae = tf.reduce_mean(logits_fake_vae)
loss_dis = (-loss_dis_real + loss_dis_fake + loss_dis_fake_vae)
loss_print += 'wasserstein distance '
# Generator loss.
loss_gen = -loss_dis_fake
if 'gradient penalty' in loss_type:
# Calculating X hat.
epsilon = tf.random.uniform(shape=tf.stack([tf.shape(real_images)[0], 1, 1, 1]), minval=0.0, maxval=1.0, dtype=tf.float32, name='epsilon')
x_gp = real_images*(1-epsilon) + fake_images*epsilon
out = discriminator(x_gp, True)
logits_gp = out[1]
# Calculating Gradient Penalty.
grad_gp = tf.gradients(logits_gp, x_gp)
l2_grad_gp = tf.sqrt(tf.reduce_sum(tf.square(grad_gp), axis=[1, 2, 3]))
grad_penalty= tf.reduce_sum(tf.square(l2_grad_gp-1.0))
loss_dis += (gp_coeff*grad_penalty)
loss_print += 'gradient penalty '
else:
print('Loss %s not defined' % loss_type)
sys.exit(1)
if display:
print('Loss: %s' % loss_print)
# VAE Loss.
e=1
mean_z_xi, logs2_z_xi, vae_downsample, lr_mean_xi_z, lr_logs2_xi_z = vae
# KL Divergence.
z_s2 = tf.exp(logs2_z_xi)
z_log_s2 = tf.log(z_s2 + e)
mean_z2 = tf.square(mean_z_xi)
kl_divergence = -.5*tf.reduce_sum(1 + z_log_s2 - mean_z2 - z_s2, axis=-1)
loss_prior = -tf.reduce_mean( -kl_divergence, axis=-1)
# Reconstruction error from enconding space datapoint.
x_s2 = tf.exp(lr_logs2_xi_z)
exp_log_s2 = tf.square(vae_downsample - lr_mean_xi_z)/(e + x_s2)
se = tf.log(2*np.pi) + tf.log(e + x_s2) + exp_log_s2
sampling_expt = tf.reduce_sum(-.5*se, axis=[1,2,3])
loss_dist_likel = -tf.reduce_mean(sampling_expt, axis=[-1])
return loss_dis, loss_gen, loss_prior, loss_dist_likel