-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtester.py
141 lines (116 loc) · 5.22 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/pickle
""" a basic script for importing student's POI identifier,
and checking the results that they get from it
requires that the algorithm, dataset, and features list
be written to my_classifier.pkl, my_dataset.pkl, and
my_feature_list.pkl, respectively
that process should happen at the end of poi_id.py
"""
from __future__ import print_function
import pickle
from time import time
from sklearn import model_selection, cross_validation
from learnEnron import feature_format
PERF_FORMAT_STRING = "\
\tAccuracy: {:>0.{display_precision}f}\tPrecision: {:>0.{display_precision}f}\t\
Recall: {:>0.{display_precision}f}\tF1: {:>0.{display_precision}f}\tF2: {:>0.{display_precision}f}"
RESULTS_FORMAT_STRING = "\tTotal predictions: {:4d}\tTrue positives: {:4d}\tFalse positives: {:4d}\
\tFalse negatives: {:4d}\tTrue negatives: {:4d}"
def test_classifier(clf, dataset, feature_list, folds=1000):
data = feature_format.featureFormat(dataset, feature_list, sort_keys=True)
labels, features = feature_format.targetFeatureSplit(data)
cv = cross_validation.StratifiedShuffleSplit(labels, folds, random_state=42)
true_negatives = 0
false_negatives = 0
true_positives = 0
false_positives = 0
t0 = time()
for train_idx, test_idx in cv:
features_train = []
features_test = []
labels_train = []
labels_test = []
for ii in train_idx:
features_train.append(features[ii])
labels_train.append(labels[ii])
for jj in test_idx:
features_test.append(features[jj])
labels_test.append(labels[jj])
# fit the classifier using training set, and test on test set
clf.fit(features_train, labels_train)
# Make predictions using fitted classifier
predictions = clf.predict(features_test)
for prediction, truth in zip(predictions, labels_test):
if prediction == 0 and truth == 0:
true_negatives += 1
elif prediction == 0 and truth == 1:
false_negatives += 1
elif prediction == 1 and truth == 0:
false_positives += 1
elif prediction == 1 and truth == 1:
true_positives += 1
else:
print("Warning: Found a predicted label not == 0 or 1.")
print("All predictions should take value 0 or 1.")
print("Evaluating performance for processed predictions:")
break
print("time taken:", round(time()-t0, 3), "s")
try:
total_predictions = (
true_negatives +
false_negatives +
false_positives +
true_positives
)
accuracy = 1.0*(true_positives + true_negatives)/total_predictions
precision = 1.0*true_positives/(true_positives+false_positives)
recall = 1.0*true_positives/(true_positives+false_negatives)
f1 = 2.0 * true_positives/(2*true_positives +
false_positives+false_negatives)
f2 = (1+2.0*2.0) * precision*recall/(4*precision + recall)
print(clf)
print(PERF_FORMAT_STRING.format(
accuracy,
precision,
recall, f1, f2,
display_precision=5
)
)
print(RESULTS_FORMAT_STRING.format(
total_predictions,
true_positives,
false_positives,
false_negatives,
true_negatives
)
)
print("")
except:
print("Got a divide by zero when trying out:", clf)
print("Precision or recall may be undefined"
"due to a lack of true positive predicitons.")
CLF_PICKLE_FILENAME = "my_classifier.pkl"
DATASET_PICKLE_FILENAME = "my_dataset.pkl"
FEATURE_LIST_FILENAME = "my_feature_list.pkl"
def dump_classifier_and_data(clf, dataset, feature_list):
with open(CLF_PICKLE_FILENAME, "wb") as clf_outfile:
pickle.dump(clf, clf_outfile)
with open(DATASET_PICKLE_FILENAME, "wb") as dataset_outfile:
pickle.dump(dataset, dataset_outfile)
with open(FEATURE_LIST_FILENAME, "wb") as featurelist_outfile:
pickle.dump(feature_list, featurelist_outfile)
def load_classifier_and_data():
with open(CLF_PICKLE_FILENAME, "rb") as clf_infile:
clf = pickle.load(clf_infile)
with open(DATASET_PICKLE_FILENAME, "rb") as dataset_infile:
dataset = pickle.load(dataset_infile)
with open(FEATURE_LIST_FILENAME, "rb") as featurelist_infile:
feature_list = pickle.load(featurelist_infile)
return clf, dataset, feature_list
def main():
# load up student's classifier, dataset, and feature_list
clf, dataset, feature_list = load_classifier_and_data()
# Run testing script
test_classifier(clf, dataset, feature_list)
if __name__ == '__main__':
main()