-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
282 lines (227 loc) · 10.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import cv2
import dlib
import numpy as np
import os
from scipy.spatial import distance
from imutils import face_utils
import pygame
from threading import Thread
from datetime import datetime
import csv
import matplotlib.pyplot as plt
import pandas as pd
# Initialize pygame mixer for playing audio and Load the alert sound
pygame.mixer.init()
alert_sound = pygame.mixer.Sound("audio/wake_up.wav")
danger_image = cv2.imread("assets/danger.png")
# Function to calculate eye aspect ratio (EAR)
def eye_aspect_ratio(eye):
A = distance.euclidean(eye[1], eye[5])
B = distance.euclidean(eye[2], eye[4])
C = distance.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def save_ear_values(ear_values, frame_count, threshold=0.25):
if ear_values:
if frame_count % 10 == 0:
timestamp = datetime.now().strftime("%M:%S:%f")
with open('output/ear_values.csv', mode='a', newline='\n') as file:
writer = csv.writer(file)
if file.tell() == 0:
writer.writerow(['time', 'EAR'])
for ear in ear_values: # Iterate over all EAR values
writer.writerow([timestamp, ear]) # Save each EAR value with the timestamp
with open('output/tiredness.csv', mode='a', newline='\n') as tiredness_file:
tiredness_writer = csv.writer(tiredness_file)
if tiredness_file.tell() == 0:
tiredness_writer.writerow(['time', 'EAR'])
for ear in ear_values: # Iterate over all EAR values
if ear < threshold: # Check if the EAR value is below the threshold
tiredness_writer.writerow([timestamp, 1]) # Save the EAR value if below the threshold
else:
tiredness_writer.writerow([timestamp, 0])
def plot_ear_values(ear_df:pd.DataFrame, tire_df:pd.DataFrame) -> None:
"""
Plot the EAR values over time.
Args:
ear_df (pd.DataFrame): DataFrame containing the raw EAR values.
tire_df (pd.DataFrame): DataFrame containing the tiredness EAR values.
"""
# Create subplots
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(30, 10), sharex=True)
# Plot raw EAR values
ax1.plot(range(len(ear_df['EAR'])), ear_df['EAR'], label='Raw EAR')
ax1.set_ylabel("Ear Value")
ax1.set_title("Raw EAR Values Over Time")
ax1.axhline(y=0.25, color='r', linestyle='--')
ax1.legend()
# Plot raw EAR values with color fill
ax2.plot(range(len(ear_df['EAR'])), ear_df['EAR'], label='Raw EAR')
ax2.fill_between(range(len(ear_df['EAR'])), ear_df['EAR'], where=ear_df['EAR'] < 0.25, color='red', alpha=0.5)
ax2.fill_between(range(len(ear_df['EAR'])), ear_df['EAR'], where=ear_df['EAR'] >= 0.25, color='green', alpha=0.5)
ax2.set_ylabel("Ear Value")
ax2.set_title("Raw EAR Values Over Time")
ax2.axhline(y=0.25, color='r', linestyle='--')
ax2.legend()
# Plot tiredness EAR values
ax3.plot(range(len(tire_df['EAR'])), tire_df['EAR'], label='Tiredness EAR')
ax3.set_xlabel("Time")
ax3.set_ylabel("Ear Value")
ax3.set_title("Tiredness EAR Values Over Time")
ax3.axhline(y=0.25, color='r', linestyle='--')
ax3.legend()
# Adjust layout
plt.tight_layout()
# Save the plot
plt.savefig("output/plot.png", dpi=600, bbox_inches='tight')
# Display the subplots
plt.show()
# Initialize variables
ear_values = []
frame_count = 0
frame_count_2 = 0
alert_count = 0
exit_flag = False
# Load face detector and landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("models/shape_predictor_68_face_landmarks.dat")
# Indices of facial landmarks for left and right eyes
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# Function to process frames
def process_frame(frame, frame_count, output_dir):
# Convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Noise reduction using bilateral filter
blurred = cv2.bilateralFilter(gray, 9, 75, 75)
# Histogram equalization for enhancing contrast
equalized = cv2.equalizeHist(gray)
# Edge detection using Sobel
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5)
edges = cv2.sqrt(cv2.addWeighted(cv2.pow(sobelx, 2), 1.0, cv2.pow(sobely, 2), 1.0, 0))
edges = cv2.normalize(edges, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)
# Morphology techniques (Closing operation to close gaps between edges)
kernel = np.ones((5,5),np.uint8)
closing = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
# Improve contrast using OpenCV convertScaleAbs
contrasted = cv2.convertScaleAbs(gray, alpha=1.5, beta=0)
# Save processed frames into respective directories
cv2.imwrite(os.path.join(output_dir, 'original', f'frame-{frame_count}.jpg'), frame)
cv2.imwrite(os.path.join(output_dir, 'sobel', f'frame-{frame_count}.jpg'), edges)
cv2.imwrite(os.path.join(output_dir, 'grey', f'frame-{frame_count}.jpg'), gray)
cv2.imwrite(os.path.join(output_dir, 'morphology', f'frame-{frame_count}.jpg'), closing)
cv2.imwrite(os.path.join(output_dir, 'noise_reduction', f'frame-{frame_count}.jpg'), blurred)
cv2.imwrite(os.path.join(output_dir, 'hist_equilization', f'frame-{frame_count}.jpg'), equalized)
cv2.imwrite(os.path.join(output_dir, 'contrast_improv', f'frame-{frame_count}.jpg'), contrasted)
return gray
# Create output directories if they don't exist
output_dir = 'output'
os.makedirs(os.path.join(output_dir, 'original'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'sobel'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'grey'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'morphology'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'noise_reduction'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'hist_equilization'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'contrast_improv'), exist_ok=True)
# Open the video file
cap = cv2.VideoCapture(0)
width = 1080
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Initialize variables
fps = cap.get(cv2.CAP_PROP_FPS)
interval = int(fps) * 1 # Extract frame every 1 second
# Function to process frames and save processed frames every 1 second
def process_frames_and_save():
global frame_count, exit_flag # Declare frame_count and exit_flag as global
while cap.isOpened():
ret, frame = cap.read()
if not ret or exit_flag: # Exit loop if not ret or exit_flag is True
break
frame_count += 1
if frame_count % interval == 0:
processed_frame = process_frame(frame, frame_count, output_dir)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
exit_flag = True # Set exit_flag to True if 'q' is pressed
break
# Start a thread for processing frames and saving processed frames
processing_thread = Thread(target=process_frames_and_save)
processing_thread.start()
# Start detecting tiredness
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Preprocessing: Convert to grayscale, detect faces
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
subjects = detector(gray, 0)
# Loop over detected faces
for subject in subjects:
# Detect facial landmarks
shape = predictor(gray, subject)
shape = face_utils.shape_to_np(shape)
# Extract left and right eye coordinates
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# Calculate EAR for each eye
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
# Average EAR of both eyes
ear = (leftEAR + rightEAR) / 2.0
ear_values.append(ear)
# Draw eyes contours
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 255), 1) # Yellow color
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 255), 1) # Yellow color
# Draw eyes on the frame
for (x, y) in leftEye:
cv2.circle(frame, (x, y), 2, (0, 0, 255), -1)
for (x, y) in rightEye:
cv2.circle(frame, (x, y), 2, (0, 0, 255), -1)
# Connect landmarks with lines
cv2.line(frame, tuple(leftEye[1]), tuple(leftEye[5]), (0, 255, 0), 1)
cv2.line(frame, tuple(leftEye[2]), tuple(leftEye[4]), (0, 255, 0), 1)
cv2.line(frame, tuple(leftEye[0]), tuple(leftEye[3]), (0, 255, 0), 1)
cv2.line(frame, tuple(rightEye[1]), tuple(rightEye[5]), (0, 255, 0), 1)
cv2.line(frame, tuple(rightEye[2]), tuple(rightEye[4]), (0, 255, 0), 1)
cv2.line(frame, tuple(rightEye[0]), tuple(rightEye[3]), (0, 255, 0), 1)
# Check if eyes are closed
if ear < 0.25:
alert_count += 1
if alert_count >= 10 and not pygame.mixer.get_busy():
# Visual alert (draw text)
cv2.putText(frame, "ALERT! Fatigue Detected !!!", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 4)
cv2.putText(frame, "ALERT! Fatigue Detected !!!", (frame.shape[1] - 550, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 4)
# Display danger image on both sides
frame[50:50 + danger_image.shape[0], 50:50 + danger_image.shape[1]] = danger_image
frame[50:50 + danger_image.shape[0], frame.shape[1] - 50 - danger_image.shape[1]:frame.shape[1] - 50] = danger_image
# Play sound alert
alert_sound.play()
else:
alert_count = 0
# Display the frame (if needed)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
exit_flag = True
break
# Increment frame count
frame_count_2 += 1
# Check if it's time to save EAR values to CSV
if frame_count_2 % 10 == 0: # Save EAR values every 10 frames
save_ear_values(ear_values, frame_count_2)
ear_values = [] # Clear the ear_values list
# Wait for the processing thread to finish
processing_thread.join()
# Release resources
cap.release()
cv2.destroyAllWindows()
ear_df = pd.read_csv('output/ear_values.csv')
tire_df = pd.read_csv('output/tiredness.csv')
plot_ear_values(ear_df, tire_df)