forked from BCV-Uniandes/AUNets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·156 lines (133 loc) · 4.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/ipython
import os, pdb
import argparse
from data_loader import get_loader
from torch.backends import cudnn
import config as cfg
def main(config):
# For fast training
cudnn.benchmark = True
# Create directories if not exist
if not os.path.exists(config.log_path):
os.makedirs(config.log_path)
if not os.path.exists(config.model_save_path):
os.makedirs(config.model_save_path)
# pdb.set_trace()
# Data loader
of_loader = None
img_size = config.image_size
rgb_loader = get_loader(
config.metadata_path,
img_size,
img_size,
config.batch_size,
config.mode,
demo=config.DEMO,
num_workers=config.num_workers,
OF=False,
verbose=True,
imagenet=config.finetuning == 'imagenet')
if config.OF:
of_loader = get_loader(
config.metadata_path,
img_size,
img_size,
config.batch_size,
config.mode,
demo=config.DEMO,
num_workers=config.num_workers,
OF=True,
verbose=True,
imagenet=config.finetuning == 'imagenet')
# Solver
from solver import Solver
solver = Solver(rgb_loader, config, of_loader=of_loader)
if config.SHOW_MODEL:
solver.display_net()
return
if config.DEMO:
solver.DEMO()
return
if config.mode == 'train':
solver.train()
solver.test()
elif config.mode == 'val':
solver.val(load=True, init=True)
elif config.mode == 'test':
solver.test()
elif config.mode == 'sample':
solver.sample()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model hyper-parameters
parser.add_argument('--image_size', type=int, default=224)
parser.add_argument('--lr', type=float, default=0.0001)
# Training settings
parser.add_argument('--batch_size', type=int, default=118)
parser.add_argument(
'--dataset', type=str, default='BP4D', choices=['BP4D'])
parser.add_argument('--num_epochs', type=int, default=12)
parser.add_argument('--num_epochs_decay', type=int, default=13)
parser.add_argument(
'--stop_training', type=int,
default=2) # How many epochs after loss_val is not decreasing
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--HYDRA', action='store_true', default=False)
parser.add_argument('--DELETE', action='store_true', default=False)
parser.add_argument('--TEST_TXT', action='store_true', default=False)
parser.add_argument('--TEST_PTH', action='store_true', default=False)
# Optical Flow
parser.add_argument(
'--OF',
type=str,
default='None',
choices=[
'None', 'Alone', 'Horizontal', 'Vertical', 'Channels', 'Conv',
'FC6', 'FC7'
])
# Test settings
parser.add_argument('--test_model', type=str, default='')
# Misc
parser.add_argument(
'--mode',
type=str,
default='train',
choices=['train', 'val', 'test', 'sample'])
parser.add_argument(
'--use_tensorboard', action='store_true', default=False)
parser.add_argument('--SHOW_MODEL', action='store_true', default=False)
parser.add_argument('--GPU', type=str, default='3')
# Path
parser.add_argument('--metadata_path', type=str, default='./data')
parser.add_argument('--log_path', type=str, default='./snapshot/logs')
parser.add_argument(
'--model_save_path', type=str, default='./snapshot/models')
parser.add_argument(
'--results_path', type=str, default='./snapshot/results')
parser.add_argument('--fold', type=str, default='0')
parser.add_argument(
'--mode_data',
type=str,
default='normal',
choices=['normal', 'aligned'])
parser.add_argument('--AU', type=str, default='1')
parser.add_argument(
'--finetuning',
type=str,
default='emotionnet',
choices=['emotionnet', 'imagenet', 'random'])
# pdb.set_trace()
parser.add_argument('--pretrained_model', type=str, default='')
# DEMO
parser.add_argument('--DEMO', type=str, default='')
# Step size
parser.add_argument(
'--log_step', type=int, default=2000) # tensorboard update
config = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = config.GPU
config = cfg.update_config(config)
# pdb.set_trace()
print(config)
main(config)