-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateTestCases.py
97 lines (83 loc) · 2.68 KB
/
generateTestCases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# New Generate Test Cases
import numpy as np
import math
import os,sys
from testCase import get_testCase
# import copy
# from keras.callbacks import History
# import tensorflow as tf
sys.path.append('../')
sys.path.append('../../')
from grader_support import stdout_redirector
from grader_support import util
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
# This grader is for the Emojify assignment
mFiles = [
"one_step_attention.py",
"model.py"
]
class suppress_stdout_stderr(object):
'''
A context manager for doing a "deep suppression" of stdout and stderr in
Python, i.e. will suppress all print, even if the print originates in a
compiled C/Fortran sub-function.
This will not suppress raised exceptions, since exceptions are printed
to stderr just before a script exits, and after the context manager has
exited (at least, I think that is why it lets exceptions through).
'''
def __init__(self):
# Open a pair of null files
self.null_fds = [os.open(os.devnull,os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
self.save_fds = [os.dup(1), os.dup(2)]
def __enter__(self):
# Assign the null pointers to stdout and stderr.
os.dup2(self.null_fds[0],1)
os.dup2(self.null_fds[1],2)
def __exit__(self, *_):
# Re-assign the real stdout/stderr back to (1) and (2)
os.dup2(self.save_fds[0],1)
os.dup2(self.save_fds[1],2)
# Close all file descriptors
for fd in self.null_fds + self.save_fds:
os.close(fd)
np.random.seed(3)
with suppress_stdout_stderr():
from solutions import *
from testCase import get_testCase
n_a = 64
n_s = 128
m = 10
dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)
human_vocab_size = len(human_vocab)
machine_vocab_size = len(machine_vocab)
im = model(Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size)
cp1 = im.count_params()
mi1 = len(im.inputs)
mo1 = len(im.outputs)
ml1 = len(im.layers)
m_out1 = np.asarray((cp1, mi1, mo1, ml1))
# GRADED FUNCTION: one_step_attention
m_out2 = get_testCase()
def generateTestCases():
testCases = {
'one_step_attention': {
'partId': 'zcQIs',
'testCases': [
{
'testInput': 0,
'testOutput': m_out2
}
]
},
'model': {
'partId': 'PTKef',
'testCases': [
{
'testInput': (Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size),
'testOutput': m_out1
}
]
}
}
return testCases