-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
58 lines (49 loc) · 2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import numpy as np
from PIL import Image
from skimage.metrics import structural_similarity,peak_signal_noise_ratio
import cv2
from matplotlib import pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
def load_image(path):
"""Read an image as a numpy array"""
return np.array(Image.open(path))
def resolve_single(model, lr):
"""Pass a single image to the model"""
return resolve(model, np.expand_dims(lr, axis=0))[0]
def resolve(model, lr_batch):
"""Pass a batch of images to the model"""
lr_batch = lr_batch.astype("float32")
sr_batch = model(lr_batch)
sr_batch = np.clip(sr_batch, 0, 255)
sr_batch = np.around(sr_batch)
sr_batch = sr_batch.astype("uint8")
return sr_batch
def bicubic_upsample(lr):
"""Perform Bicubic interpolation on an image"""
h, w, _ = lr.shape
return cv2.resize(lr, (w*4, h*4), interpolation=3)
#Evaluation Metrics
def sklearn_cosine(img1, img2):
"""Compute Cosine Similarity from scikitlearn"""
im1=cv2.cvtColor(img1 , cv2.COLOR_RGB2YUV)
im2=cv2.cvtColor(img2 , cv2.COLOR_RGB2YUV)
return cosine_similarity([(im1[:,:,0]).flatten()], [(im2[:,:,0]).flatten()])[0][0]
def scipy_cosine(img1, img2):
"""Compute Cosine Similarity from scipy"""
im1=cv2.cvtColor(img1 , cv2.COLOR_RGB2YUV)
im2=cv2.cvtColor(img2 , cv2.COLOR_RGB2YUV)
return 1. - cdist([(im1[:,:,0]).flatten()],[ (im2[:,:,0]).flatten()], 'cosine')[0][0]
def SSIM_y_channel(img1, img2):
"""Calculae SSIM on the Y channel of YUV Image"""
im1=cv2.cvtColor(img1 , cv2.COLOR_RGB2YUV)
im2=cv2.cvtColor(img2 , cv2.COLOR_RGB2YUV)
sim = structural_similarity(im1[:,:,0],im2[:,:,0])
return sim
def PSNR_y_channel(true_img, fake_img):
"""Calculae PSNR on the Y channel of YUV Image"""
im_true=cv2.cvtColor(true_img , cv2.COLOR_RGB2YUV)
im_fake=cv2.cvtColor(fake_img , cv2.COLOR_RGB2YUV)
psnr= peak_signal_noise_ratio(im_true[:,:,0],im_fake[:,:,0])
return psnr