-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJunkCode.py
1065 lines (791 loc) · 27.5 KB
/
JunkCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def zero_forecaster(train_series, pred_series, subset):
# Retrieve weeks of year in prediction days
pred_weeks = pred_series.time_index.week.unique().tolist()
# For every univariate train-prediction pair:
for series in subset:
train = train_series[series]
pred = pred_series[series]
# For every week in prediction weeks:
for week in pred_weeks:
# Retrieve indexes of prediciton steps in this week
pred_indexes = np.where(
pred.time_index.week == week
)[0].tolist()
# Retrieve indexes of training dates in this week
train_indexes = np.where(
train.time_index.week == week
)[0].tolist()
# Sum the sales in the indexed training days
sum_sales = train[train_indexes].univariate_values().sum()
# If the sum is zero, replace predictions in this week with zero
if sum_sales == 0:
pred_series[]
ts_sales["1"][[1, 2 ,3]]
# ETS future covariates
ets_futcovars = ['oil', 'oil_ma28', 'onpromotion', 'onp_ma28', 'local_holiday', 'regional_holiday', 'national_holiday', 'ny1', 'ny2', 'ny_eve31', 'ny_eve30', 'xmas_before', 'xmas_after', 'quake_after', 'dia_madre', 'futbol', 'black_friday', 'cyber_monday']
# First fit & validate the first series to initialize series
_ = model_ets.fit(
y_train_disagg[0],
future_covariates = x_disagg[0][ets_futcovars]
)
pred_ets2_disagg = model_ets.predict(
n = 15,
future_covariates = x_disagg[0][ets_futcovars]
)
# Then loop over all stores except first
for i in tqdm(range(1, len(y_train_disagg))):
# Fit on training data
_ = model_ets.fit(
y_train_disagg[i],
future_covariates = x_disagg[i][ets_futcovars]
)
# Predict validation data
pred = model_ets.predict(
n = 15,
future_covariates = x_disagg[i][ets_futcovars]
)
# Stack predictions to multivariate series
pred_ets2_disagg = pred_ets2_disagg.stack(pred)
del pred, i
# Score predictions
scores_hierarchy(
ts_sales[categories_stores][-15:],
trafo_zeroclip(pred_ets2_disagg),
categories_stores,
"Exponential smoothing (with future covariates"
)
# Perform STL decomposition on training data to get trend + seasonality and remainder series
trend_disagg = []
season_disagg = []
remainder_disagg = []
for series in tqdm(y_train_disagg):
# # Log transform series
# series = trafo_log(series)
# Perform STL decomposition
trend, seasonality = decomposition(
series,
model = ModelMode.ADDITIVE,
method = "STL",
freq = 7, # N. of obs in each seasonality cycle (12 for monthly CO2 data with yearly seasonality cycle)
seasonal = 29, # Size of seasonal smoother (last n lags)
trend = 731, # Size of trend smoother
robust = True
)
# Rename components in trend and seasonality series
trend = trend.with_columns_renamed(
trend.components[0],
series.components[0]
)
seasonality = seasonality.with_columns_renamed(
seasonality.components[0],
series.components[0]
)
# Remove trend & seasonality from series
remainder = remove_from_series(
series,
(trend + seasonality),
ModelMode.ADDITIVE
)
# Append to lists
trend_disagg.append(
# trafo_exp(trend)
trend
)
season_disagg.append(
# trafo_exp(seasonality)
seasonality
)
remainder_disagg.append(
# trafo_exp(remainder)
remainder
)
# Cleanup
del series, trend, seasonality, remainder
y_train_disagg["BREAD/BAKERY-8"].plot()
trend_disagg[8].plot(label = "STL trend")
plt.show()
plt.close("all")
season_disagg[8].plot(label = "STL seasonality")
plt.show()
plt.close("all")
remainder_disagg[8].plot(label = "STL remainder")
plt.show()
plt.close("all")
# First fit & validate the first store to initialize series
_ = model_linear2.fit(
y_train_disagg[0],
future_covariates = x_disagg[0][linear2_futcovars],
past_covariates = x_disagg[0][linear2_pastcovars]
)
pred_linear2_disagg = model_linear2.predict(
n=15,
future_covariates = x_disagg[0][linear2_futcovars]
)
# Then loop over all categories except first
for i in tqdm(range(1, len(y_train_disagg))):
# Fit on training data
_ = model_linear2.fit(
remainder_disagg[i],
future_covariates = x_disagg[i][linear2_futcovars],
past_covariates = x_disagg[i][linear2_pastcovars]
)
# Predict validation data
pred = model_linear2.predict(
n=15,
future_covariates = x_disagg[i][linear2_futcovars]
)
# Stack predictions to multivariate series
pred_linear2_disagg = pred_linear2_disagg.stack(pred)
del pred, i
exec(open("test2.py").read())
Sys.setenv(QUARTO_PYTHON="./venv/Scripts/python.exe")
print(np.isnan(series1.values()).sum())
lr_scheduler_cls = torch.optim.lr_scheduler.CyclicLR,
lr_scheduler_kwargs = {
"base_lr": 0.001,
"max_lr": 0.01,
"step_size_up": 100,
"mode": "exp_range",
"gamma": 0.8,
"cycle_momentum": False
}
{python StoreDLinearSpec}
# from darts.models.forecasting.dlinear import DLinearModel as DLinear
#
# # Specify DLinear model
# model_dlinear_store = DLinear(
# input_chunk_length = 90,
# output_chunk_length = 15,
# kernel_size = 27,
# batch_size = 32,
# n_epochs = 500,
# model_name = "DLinearStore2",
# log_tensorboard = True,
# save_checkpoints = True,
# random_state = 1923,
# pl_trainer_kwargs = {
# "callbacks": [early_stopper, progress_bar],
# "accelerator": "gpu",
# "devices": [0]
# },
# show_warnings = True,
# force_reset = True
# )
{python StoreDLinearFit}
#| output: false
#| warning: false
#| include: false
# # D-linear covariates (trend + season + calendar)
# dlinear_covars = ['tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'day_sin', 'day_cos', 'month_sin', 'month_cos', 'local_holiday', 'regional_holiday', 'national_holiday', 'ny1', 'ny2', 'ny_eve31', 'ny_eve30', 'xmas_before', 'xmas_after', 'quake_after', 'dia_madre', 'futbol', 'black_friday', 'cyber_monday']
#
# # Fit d-linear model
# model_dlinear_store.fit(
# series = y_train_store,
# future_covariates = [x[dlinear_covars] for x in x_store],
# val_series = y_val_store,
# val_future_covariates = [x[dlinear_covars] for x in x_store],
# verbose = True
# )
{python StoreDLinearValid}
# # Predict validation data with D-Linear
# pred_dlinear_store_list = model_dlinear_store.predict(
# n = 227,
# series = y_train_store,
# future_covariates = [x[dlinear_covars] for x in x_store]
# )
#
# # Stack predictions to get multivariate series
# pred_dlinear_store = pred_dlinear_store_list[0].stack(pred_dlinear_store_list[1])
# for pred in pred_dlinear_store_list[2:]:
# pred_dlinear_store = pred_dlinear_store.stack(pred)
# del pred
{python}
# # First fit & validate the first store to initialize series
# pred_dlinear_store = model_dlinear_store.predict(
# n=227,
# series = y_train_store[0],
# future_covariates = x_store[0][dlinear_covars]
# )
#
# # Then loop over all categories except first
# for i in tqdm(range(1, len(y_train_store))):
#
# # Predict validation data
# pred = model_dlinear_store.predict(
# n=227,
# series = y_train_store[i],
# future_covariates = x_store[i][dlinear_covars]
# )
#
# # Stack predictions to multivariate series
# pred_dlinear_store = pred_dlinear_store.stack(pred)
#
# del pred
{python StoreRFLinear}
# Model spec
model_rf_store_global = model_rf_store
# Time covariates
rf_covars = ['oil', 'oil_ma28', 'onpromotion', 'onp_ma28', 'transactions', 'trns_ma7']
# First fit on all stores & predict the first store to initialize series
model_rf_store_global.fit(
y_train_store,
future_covariates = [x[rf_covars] for x in x_store]
)
pred_rf_store_global = model_rf_store_global.predict(
n=227,
series = y_train_store[0],
future_covariates = x_store[0][rf_covars]
)
# Then loop over all categories except first
for i in tqdm(range(1, len(y_val_store))):
# Predict validation data
pred = model_rf_store_global.predict(
n=227,
series = y_train_store[i],
future_covariates = x_store[i][rf_covars]
)
# Stack predictions to multivariate series
pred_rf_store_global = pred_rf_store_global.stack(pred)
# Cleanup
del pred
# Random forest (global)
scores_hierarchy(
ts_sales[stores][-227:],
trafo_zero(pred_linear_store + pred_rf_store_global),
stores,
"Linear + global RF"
)
# Create grouped Darts TS
store_covars = TimeSeries.from_group_dataframe(
df.drop(["id", "category", "category_store_nbr"], axis=1),
group_cols = "store_nbr",
static_cols = ["city", "state", "store_type", "store_cluster"],
fill_missing_dates = True,
freq = "D"
)
from sklearn.preprocessing import OrdinalEncoder
# Create encoder for static covariates
trafo_static = StaticCovariatesTransformer()
from darts.dataprocessing.transformers.static_covariates_transformer import StaticCovariatesTransformer
{python CategoryArimaSpec}
from darts.models.forecasting.auto_arima import AutoARIMA
# AutoARIMA
model_arima_cat = AutoARIMA(
start_p = 0,
max_p = 7,
start_q = 0,
max_q = 7,
seasonal = False, # Don't include seasonal orders
information_criterion = 'aicc', # Minimize AICc to choose best model
trace = False # Don't print tuning iterations
)
{python CategoryArimaFitVal}
# {python CatLinearResids}
#
# # Retrieve 2014 > residuals from linear decomposition model
#
# # Initialize list of linear model residuals
# res_linear_cat = []
#
# # Then loop over all categories except first
# for i in tqdm(range(0, len(y_train_cat))):
#
# # Retrieve residuals
# res = model_linear_cat.residuals(
# y_train_cat[i],
# future_covariates = x_cat[i][linear_covars]
# )
#
# # Drop residuals before 2014
# res = res.split_after(pd.Timestamp("2013-12-31"))[1]
#
# # Append residuals to list
# res_linear_cat.append(res)
#
# #Cleanup
# del res
# AutoARIMA
arima_covars = ['local_holiday', 'regional_holiday', 'national_holiday', 'ny1', 'ny2', 'ny_eve31', 'ny_eve30', 'xmas_before', 'xmas_after', 'quake_after', 'dia_madre', 'futbol', 'black_friday', 'cyber_monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'oil', 'oil_ma28', 'onpromotion', 'onp_ma28', 'transactions', 'trns_ma7', 'day_sin', 'day_cos', "month_sin", "month_cos"]
# First fit & validate the first category to initialize series
model_arima_cat.fit(
y_train_cat[0],
future_covariates = x_cat[0][arima_covars])
pred_arima_cat = model_arima_cat.predict(
n=227,
future_covariates = x_cat[0][arima_covars])
# Then loop over all categories except first
for i in tqdm(range(1, len(y_train_cat))):
# Fit on training data
model_arima_cat.fit(
y_train_cat[i],
future_covariates = x_cat[i][arima_covars])
# Predict validation data
pred = model_arima_cat.predict(
n=227,
future_covariates = x_cat[i][arima_covars])
# Stack predictions to multivariate series
pred_arima_cat = pred_arima_cat.stack(pred)
# Cleanup
del pred
# AutoARIMA
scores_hierarchy(
ts_sales["AUTOMOTIVE":"SEAFOOD"][-227:],
trafo_zero(pred_arima_cat),
categories,
"AutoARIMA"
)
static_covariates = pd.DataFrame(
data = {"category": category},
index = [1]
)
ts_sales["AUTOMOTIVE":"SEAFOOD"][:-227]
jupyter nbextension enable --py widgetsnbextension
pip uninstall ipywidgets
# Create min-max scaler
scaler_minmax = Scaler()
# Train-validation split and scaling for covariates
x_train_cat, x_val_cat = [], []
for series in ts_catcovars:
# Split train-val series
cov_train, cov_val = series[:-243], series[-243:-16]
# Scale train-val series
cov_train = scaler_minmax.fit_transform(cov_train)
cov_val = scaler_minmax.transform(cov_val)
# Cast series to 32-bits for performance gains
cov_train = cov_train.astype(np.float32)
cov_val = cov_val.astype(np.float32)
# Append series
x_train_cat.append(cov_train)
x_val_cat.append(cov_val)
# Cleanup
del cov_train, cov_val
"accelerator": "gpu",
"devices": [0]
import torch
torch.cuda.is_available()
from pytorch_lightning.accelerators import find_usable_cuda_devices
find_usable_cuda_devices(2)
from statistics import fmean, stdev
# Define model scoring function for full hierarchy
def scores_hierarchy(val, pred, subset, model):
def measure_rmse(val, pred, subset):
return rmse([val[c] for c in subset], [pred[c] for c in subset])
def measure_rmsle(val, pred, subset):
return rmsle([val[c] for c in subset], [pred[c] for c in subset])
# def measure_mape(val, pred, subset):
# return mape([val[c] for c in subset], [pred[c] for c in subset])
scores_dict = {
"RMSE": measure_rmse(val, pred, subset),
"RMSLE": measure_rmsle(val, pred, subset)
# "MAPE": measure_mape(val, pred, subset)
}
print("Model=" + model)
for key in scores_dict:
print(
key + ": mean=" +
str(round(fmean(scores_dict[key]), 2)) +
", sd=" +
str(round(stdev(scores_dict[key]), 2)) +
", min=" + str(round(min(scores_dict[key]), 2)) +
", max=" +
str(round(max(scores_dict[key]), 2))
)
print("--------")
# Export the linear + random forest hybrid's 2017 predictions for use in part 2
pred_forest.to_csv("./ModifiedData/2017TotalPreds.csv")
# Fill gaps by interpolating missing values
from darts.dataprocessing.transformers import MissingValuesFiller
na_filler = MissingValuesFiller()
ts_sales["TOTAL"] = na_filler.transform(ts_sales["TOTAL"])
ts_timecovars = na_filler.transform(ts_timecovars)
ts_totalcovars1 = na.filler.transform(ts_totalcovars1)
# df_agg = df_train.groupby("date").agg(
# {
# "sales": "mean",
# "onpromotion": "sum",
# "transactions": "sum",
# "oil": "mean",
# "local_holiday": "mean",
# "regional_holiday": "mean",
# "national_holiday": "mean",
# "event": "mean"
# }
# )
# Plot annual seasonality, quarters aggregated
sales_quarterly = total_sales[(total_sales.index.year < 2017) | (total_sales.index.month < 7)]
sales_quarterly = sales_quarterly.groupby([(sales_quarterly.index.quarter), (sales_quarterly.index.year)]).sum()
sales_quarterly.index.names = "quarter", "year"
sales_quarterly = sales_quarterly.reset_index()
sales_quarterly.sales = sales_quarterly.sales / 1000000
sns.lineplot(
x = sales_quarterly.quarter.astype(str),
y = sales_quarterly.sales,
hue = sales_quarterly.year.astype(str),
data = sales_quarterly
)
plt.ylabel("quarterly sales, millions")
plt.xlabel("quarter")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
# Plot annual seasonality, months aggregated
sales_monthly = total_sales[(total_sales.index.year < 2017) | (total_sales.index.month < 8)]
sales_monthly = sales_monthly.groupby([(sales_monthly.index.month), (sales_monthly.index.year)]).sum()
sales_monthly.index.names = "month", "year"
sales_monthly = sales_monthly.reset_index()
sales_monthly.sales = sales_monthly.sales / 1000000
sns.lineplot(
x = sales_monthly.month.astype(str),
y = sales_monthly.sales,
hue = sales_monthly.year.astype(str),
data = sales_monthly
)
plt.ylabel("monthly sales, millions")
plt.xlabel("month")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
# Plot annual seasonality, weeks aggregated
sales_weekly = total_sales[
(total_sales.index.year < 2017) | ((total_sales.index.month < 8) & (~total_sales.index.week.isin([31,52])))]
sales_weekly = sales_weekly.groupby([(sales_weekly.index.week), (sales_weekly.index.year)]).sum()
sales_weekly.index.names = "week", "year"
sales_weekly = sales_weekly.reset_index()
sales_weekly.sales = sales_weekly.sales / 1000000
sns.lineplot(
x = sales_weekly.week,
y = sales_weekly.sales,
hue = sales_weekly.year.astype(str),
data = sales_weekly
)
plt.ylabel("weekly sales, millions")
plt.xlabel("week")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
# Plot annual seasonality, day of year aggregated
sales_dayofyear = total_sales[(total_sales.index.year < 2017) | (total_sales.index.month < 8)]
sales_dayofyear= sales_dayofyear.groupby([(sales_dayofyear.index.dayofyear), (sales_dayofyear.index.year)]).sum()
sales_dayofyear.index.names = "dayofyear", "year"
sales_dayofyear = sales_dayofyear.reset_index()
sales_dayofyear.sales = sales_dayofyear.sales / 1000000
sns.lineplot(
x = sales_dayofyear.dayofyear,
y = sales_dayofyear.sales,
hue = sales_dayofyear.year.astype(str),
data = sales_dayofyear
)
plt.ylabel("daily sales, millions")
plt.xlabel("day of year")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
# Plot monthly seasonality, days of month aggregated
sales_dayofmonth = total_sales[(total_sales.index.year < 2017)]
sales_dayofmonth = sales_dayofmonth.groupby([(sales_dayofmonth.index.day), (sales_dayofmonth.index.year)]).sum()
sales_dayofmonth.index.names = "day", "year"
sales_dayofmonth = sales_dayofmonth.reset_index()
sales_dayofmonth.sales = sales_dayofmonth.sales / 1000000
sns.lineplot(
x = sales_dayofmonth.day,
y = sales_dayofmonth.sales,
hue = sales_dayofmonth.year.astype(str),
data = sales_dayofmonth
)
plt.ylabel("sales, millions")
plt.xlabel("day of month")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
# Plot weekly seasonality, days of week aggregated
sales_dayofweek = total_sales[(total_sales.index.year < 2017) | (total_sales.index.month < 8)]
sales_dayofweek = sales_dayofweek.groupby([(sales_dayofweek.index.dayofweek), (sales_dayofweek.index.year)]).sum()
sales_dayofweek.index.names = "day", "year"
sales_dayofweek = sales_dayofweek.reset_index()
sales_dayofweek.sales = sales_dayofweek.sales / 1000000
sns.lineplot(
x = (sales_dayofweek.day + 1).astype(str),
y = sales_dayofweek.sales,
hue = sales_dayofweek.year.astype(str),
data = sales_dayofweek
)
plt.ylabel("sales, millions")
plt.xlabel("day of week")
plt.legend(title = "year", bbox_to_anchor=(1.05, 1.0), fontsize="small", loc='upper left')
plt.show()
plt.close("all")
from sktime.utils.plotting import plot_correlations
plot_correlations(total_sales)
# Lag plots
from sktime.utils.plotting import plot_lags
fig3, ax3 = plot_lags(total_sales, lags=[1,2,3,4,5,6,7])
plt.show()
plt.close("all")
from darts.utils.statistics import plot_acf
from darts.utils.statistics import plot_pacf
from darts.utils.statistics import plot_residuals_analysis
fig3, axes3 = plt.subplots(2)
fig3.suptitle("ACF and PACF plots, daily sales")
# ACF plot
plot_acf(ts_total, axis=axes3[0], max_lag=54, bartlett_confint=False)
# Show fig3
plt.show()
fig3.savefig("./", dpi=300)
plt.close("all")
plot_acf(ts_total["sales"], max_lag=54)
plot_pacf(ts_total["sales"], max_lag=54)
plot_residuals_analysis(ts_total["sales"])
# STL decomposition
from statsmodels.tsa.seasonal import STL
stl_monthly = STL(np.log(total_sales), period=28, robust=True).fit()
stl_monthly.plot()
stl_monthly.trend
df["xmas_before"] = 0
df.loc[(df.index.day == 23) & (df.index.month == 12), "xmas_before"] = 11
df.loc[(df.index.day.isin([21,22])) & (df.index.month == 12), "xmas_before"] = 10
df.loc[(df.index.day == 20) & (df.index.month == 12), "xmas_before"] = 9
df.loc[(df.index.day.isin([18,19])) & (df.index.month == 12), "xmas_before"] = 8
df.loc[(df.index.day == 17) & (df.index.month == 12), "xmas_before"] = 7
df.loc[(df.index.day == 16) & (df.index.month == 12), "xmas_before"] = 6
df.loc[(df.index.day == 15) & (df.index.month == 12), "xmas_before"] = 5
df.loc[(df.index.day == 14) & (df.index.month == 12), "xmas_before"] = 4
df.loc[(df.index.day == 13) & (df.index.month == 12), "xmas_before"] = 3
df["xmas_after"] = 0
df.loc[(df.index.day == 23) & (df.index.month == 12), "xmas_before"] = 5
df.loc[(df.index.day == 24) & (df.index.month == 12), "xmas_before"] = 4
df.loc[(df.index.day == 25) & (df.index.month == 12), "xmas_before"] = 3
df.loc[(df.index.day == 26) & (df.index.month == 12), "xmas_before"] = 2
df.loc[(df.index.day == 27) & (df.index.month == 12), "xmas_before"] = 1
from darts.models.forecasting.exponential_smoothing import ExponentialSmoothing
from darts.utils.utils import ModelMode
from darts.utils.utils import SeasonalityMode
model_exp = ExponentialSmoothing(
trend = ModelMode.ADDITIVE,
seasonal = SeasonalityMode.ADDITIVE,
seasonal_periods = 7)
model_exp.fit(y_train)
pred_exp = model_exp.predict(n = 227)
from statsmodels.tsa.stattools import ccf
ccfs = pd.DataFrame(
{
"oil": ccf(sales_covariates["oil"], sales_covariates["sales"]),
"onpromotion": ccf(sales_covariates["onpromotion"], sales_covariates["sales"]),
"transactions": ccf(sales_covariates["transactions"], sales_covariates["sales"]),
}
)
# Calculate cross-correlations of sales and covariates
ccfs = pd.DataFrame.from_dict(
{x: [sales_covariates["sales"].corr(sales_covariates[x].shift(t)) for t in range(0,181)] for x in sales_covariates.columns})
# FIG10: Oil vs sales timeplots
fig10, axes10 = plt.subplots(2, sharex=True)
fig10.suptitle("Oil and sales")
# Sales
sns.lineplot(
ax = axes10[0],
x = sales_covariates.index,
y = "sales",
data = sales_covariates
)
axes10[0].set_ylabel("sales, decomposed")
# Oil
sns.lineplot(
ax = axes10[1],
x = sales_covariates.index,
y = "oil",
data = sales_covariates
)
axes10[1].set_ylabel("oil, differenced")
# Show fig10
plt.show()
fig10.savefig("./Plots/LagsEDA/OilTime.png", dpi=300)
plt.close("all")
# Cross correlation
sns.barplot(
x = -ccfs.index,
y = ccfs.oil
)
plt.title("Correlation of sales & oil lags")
plt.xlabel("lags")
plt.ylabel("correlation")
plt.show()
plt.close("all")
from statsmodels.tsa.stattools import grangercausalitytests as granger
granger_oil = granger(sales_covariates[["sales", "oil"]], maxlag=180)
# FIG10: Regplots of oil moving averages & sales
fig10, axes10 = plt.subplots(2,2, sharey=True)
fig10.suptitle("Oil price change moving averages\n & decomposed sales")
# MA7
sns.regplot(
ax = axes10[0,0],
data = sales_covariates,
x = "oil_ma7",
y = "sales"
)
axes10[0,0].set_xlabel("weekly MA")
# MA14
sns.regplot(
ax = axes10[0,1],
data = sales_covariates,
x = "oil_ma14",
y = "sales"
)
axes10[0,1].set_xlabel("biweekly MA")
# MA28
sns.regplot(
ax = axes10[1,0],
data = sales_covariates,
x = "oil_ma28",
y = "sales"
)
axes10[1,0].set_xlabel("monthly MA")
# MA84
sns.regplot(
ax = axes10[1,1],
data = sales_covariates,
x = "oil_ma84",
y = "sales"
)
axes10[1,1].set_xlabel("quarterly MA")
rng = np.random.default_rng(1923)
for column in extreme_oil.columns:
column_mean = extreme_oil[column].mean()
column_sd = extreme_oil[column].std()
na_filler = pd.Series(rng.normal(loc=column_mean, scale=column_sd, size=len(extreme_oil[column])))
extreme_oil[column] = extreme_oil[column].fillna(na_filler)
# Random distribution interpolation
rng = np.random.default_rng(1923)
mu = sales_covariates["oil_ma28"].mean()
sd = sales_covariates["oil_ma28"].std()
na_filler = pd.Series(rng.normal(loc=mu, scale=sd, size=len(sales_covariates["oil_ma28"])))
sales_covariates["oil_ma28"] = sales_covariates["oil_ma28"].fillna(na_filler)
# Add oil moving averages
sales_covariates = sales_covariates.assign(
oil_ma7 = lambda x: x["oil"].rolling(window = 7, min_periods = 1, center = False).mean(),
oil_ma14 = lambda x: x["oil"].rolling(window = 14, min_periods = 1, center = False).mean(),
oil_ma28 = lambda x: x["oil"].rolling(window = 28, min_periods = 1, center = False).mean(),
oil_ma84 = lambda x: x["oil"].rolling(window = 84, min_periods = 1, center = False).mean(),
oil_ma168 = lambda x: x["oil"].rolling(window = 168, min_periods = 1, center = False).mean(),
oil_ma336 = lambda x: x["oil"].rolling(window = 336, min_periods = 1, center = False).mean(),
)
# FIG10: Regplots of oil moving averages & sales
fig10, axes10 = plt.subplots(3,2, sharey=True)
fig10.suptitle("Oil price change moving averages\n & decomposed sales")
# MA7
sns.regplot(
ax = axes10[0,0],
data = sales_covariates,
x = "oil_ma7",
y = "sales"
)
axes10[0,0].set_xlabel("weekly MA")
axes10[0,0].annotate(
'Corr={:.2f}'.format(
spearmanr(sales_covariates["oil_ma7"], sales_covariates["sales"])[0]
), xy=(.6, .9), xycoords="axes fraction",
bbox=dict(alpha=0.5))
# MA14
sns.regplot(
ax = axes10[0,1],
data = sales_covariates,
x = "oil_ma14",
y = "sales"
)
axes10[0,1].set_xlabel("biweekly MA")
axes10[0,1].annotate(
'Corr={:.2f}'.format(
spearmanr(sales_covariates["oil_ma14"], sales_covariates["sales"])[0]
), xy=(.6, .9), xycoords="axes fraction",
bbox=dict(alpha=0.5))
# MA28
sns.regplot(
ax = axes10[1,0],
data = sales_covariates,
x = "oil_ma28",
y = "sales"
)
axes10[1,0].set_xlabel("monthly MA")
axes10[1,0].annotate(
'Corr={:.2f}'.format(
spearmanr(sales_covariates["oil_ma28"], sales_covariates["sales"])[0]
), xy=(.6, .9), xycoords="axes fraction",
bbox=dict(alpha=0.5))
# MA84
sns.regplot(
ax = axes10[1,1],
data = sales_covariates,
x = "oil_ma84",
y = "sales"
)
axes10[1,1].set_xlabel("quarterly MA")
axes10[1,1].annotate(
'Corr={:.2f}'.format(
spearmanr(sales_covariates["oil_ma84"], sales_covariates["sales"])[0]
), xy=(.6, .9), xycoords="axes fraction",
bbox=dict(alpha=0.5))
# MA168
sns.regplot(
ax = axes10[2,0],
data = sales_covariates,
x = "oil_ma168",
y = "sales"
)
axes10[2,0].set_xlabel("semi-annual MA")
axes10[2,0].annotate(
'Corr={:.2f}'.format(
spearmanr(sales_covariates["oil_ma168"], sales_covariates["sales"])[0]
), xy=(.6, .9), xycoords="axes fraction",
bbox=dict(alpha=0.5))
# MA336
sns.regplot(
ax = axes10[2,1],
data = sales_covariates,
x = "oil_ma336",
y = "sales"
)
axes10[2,1].set_xlabel("annual MA")