-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSICOV_GPU.py
287 lines (231 loc) · 8.82 KB
/
SSICOV_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#import numpy as np
from collections import OrderedDict
from numba import jit
from typing import Tuple,Dict
from utils import print_input_sizes, timeit
from numpy.typing import NDArray
from numba import jit, prange
import cupy as cp
import numpy as np
import cupyx.linalg
def blockToeplitz_jit(IRF: cp.ndarray) -> Tuple[cp.ndarray, cp.ndarray, cp.ndarray, cp.ndarray]:
N1 = round(IRF.shape[2] / 2) - 1
M = IRF.shape[1]
IRF_cp = cp.array(IRF) # Convert NumPy array to CuPy array
T1 = cp.zeros((N1 * M, N1 * M), dtype=cp.complex128)
# Replace prange with range if using 'numba' is not part of the requirement.
for oo in prange(N1):
for ll in prange(N1):
# NumPy and CuPy indexing is similar. This should remain unchanged.
T1[oo * M:(oo + 1) * M, ll * M:(ll + 1) * M] = IRF_cp[:, :, N1 - 1 + oo - ll]
# Singular Value Decomposition (SVD)
_U, _S, Vt = cp.linalg.svd(T1)
# Transpose Vt to get V
V = Vt.T
U = cp.asnumpy(_U)
S = cp.asnumpy(_S)
return U, S, V, T1
class SSICOV:
def __init__(self, acc: NDArray,
fs: float,
Ts: float,
Nc: int,
Nmax: int,
Nmin: int
) -> None:
self.acc = cp.array(acc)
self.fs = fs
self.Ts = Ts
self.Nc = Nc
self.Nmax = Nmax
self.Nmin = Nmin
@timeit
def NexT(self)->cp.ndarray:
dt = 1/self.fs
M = round(self.Ts/dt)
IRF = cp.zeros((self.Nc, self.Nc, M-1), dtype=cp.complex64) # Use cupy's complex64 dtype
for oo in range(self.Nc):
for jj in range(self.Nc):
y1 = cp.fft.fft(self.acc[:, oo])
y2 = cp.fft.fft(self.acc[:, jj])
# cross-correlation: ifft of [cross-power spectrum]
h0 = cp.fft.ifft(y1 * y2.conj())
# impulse response function
IRF[oo, jj, :] = cp.real(h0[:M-1]) # Using cupy's real method
if self.Nc == 1:
IRF = IRF.squeeze() # Use cupy's squeeze method
IRF = IRF / IRF[0] # Normalization with cupy's arithmetic
return IRF
@timeit
def blockToeplitz(self, IRF: NDArray) -> Tuple[NDArray, NDArray, NDArray, NDArray]:
return blockToeplitz_jit(IRF)
@timeit
def modalID(self,U,S,Nmodes,Nyy,fs):
S = np.diag(S)
if Nmodes >= S.shape[0]:
print("changing the number of modes to the maximum possible")
Nmodes = S.shape[0]
dt = 1/self.fs
O = np.matmul(U[:,0:Nmodes],np.sqrt(S[0:Nmodes,0:Nmodes]))
IndO = min(Nyy,len(O[:,0]))
C = O[0:IndO,:]
jb =O.shape[0]/IndO
ao = int((IndO)*(jb-1))
bo = int(len(O[:,0])-(IndO)*(jb-1))
co = len(O[:,0])
A =np.matmul( np.linalg.pinv(O[0:ao,:]),O[bo:co,:])
[Vi,Di] = np.linalg.eig(A)
mu = np.log(np.diag(np.diag(Vi)))/dt
fno = np.abs(mu)/(2*np.pi)
fn = fno[np.ix_(*[range(0,i,2) for i in fno.shape])]
zetaoo = -np.real(mu)/np.abs(mu)
zeta = zetaoo[np.ix_(*[range(0,i,2) for i in zetaoo.shape])]
phi0 = np.real(np.matmul(C[0:IndO,:],Di))
phi = phi0[:,1::2]
return fn,zeta,phi
@timeit
def stabilityCheck(self, fn0, zeta0, phi0, fn1, zeta1, phi1):
eps_freq = 2e-2
eps_zeta = 4e-2
eps_MAC = 5e-2
stability_status = []
fn = []
zeta = []
phi_list = []
MAC = []
# frequency stability
N0 = len(fn0)
N1 = len(fn1)
for rr in range(N0-1):
for jj in range(N1-1):
stab_fn = self.errorcheck(fn0[rr], fn1[jj], eps_freq)
stab_zeta = self.errorcheck(zeta0[rr], zeta1[jj], eps_zeta)
stab_phi, dummyMAC = self.getMAC(phi0[:, rr], phi1[:, jj], eps_MAC)
# get stability status
if stab_fn == 0:
stabStatus = 0 # new pole
elif stab_fn == 1 and stab_phi == 1 and stab_zeta == 1:
stabStatus = 1 # stable pole
elif stab_fn == 1 and stab_zeta == 0 and stab_phi == 1:
stabStatus = 2 # pole with stable frequency and vector
elif stab_fn == 1 and stab_zeta == 1 and stab_phi == 0:
stabStatus = 3 # pole with stable frequency and damping
elif stab_fn == 1 and stab_zeta == 0 and stab_phi == 0:
stabStatus = 4 # pole with stable frequency
else:
raise ValueError("Error: stability_status is undefined")
fn.append(fn1[jj])
zeta.append(zeta1[jj])
phi_list.append(phi1[:, jj])
MAC.append(dummyMAC)
stability_status.append(stabStatus)
ind = np.argsort(fn)
fn = np.sort(fn)
zeta = np.array(zeta)[ind]
phi = np.column_stack(phi_list)[:, ind]
MAC = np.array(MAC)[ind]
stability_status = np.array(stability_status)[ind]
return fn, zeta, phi, MAC, stability_status
def errorcheck(self, xo,x1,eps):
if abs(1-xo/x1)<eps:
y = 1
else:
y = 0
return y
def getMAC(self, x0, x1, eps):
Num = np.abs(np.dot(x0.flatten(), x1.flatten()))**2
D1 = np.dot(x0.flatten(), x0.flatten())
D2 = np.dot(x1.flatten(), x1.flatten())
dummyMAC = Num / (D1 * D2)
if dummyMAC > (1 - eps):
y = 1
else:
y = 0
return y, dummyMAC
def flip_dic(self, a) -> OrderedDict:
d = OrderedDict(a)
dreversed = OrderedDict()
for k in reversed(d):
dreversed[k] = d[k]
return dreversed
@timeit
def getStablePoles(self, fn, zeta, phi, MAC, stablity_status):
fnS = []
zetaS = []
phiS = []
MACS = []
for i in range(len(fn)):
for j in range(len(stablity_status[i])):
if stablity_status[i][j] == 1:
fnS.append(fn[i][j])
zetaS.append(zeta[i][j])
phiS.append(phi[i][:, j])
MACS.append(MAC[i][j])
fnS = np.array(fnS)
zetaS = np.array(zetaS)
phiS = np.array(phiS).T
MACS = np.array(MACS)
# Remove negative damping
valid_indices = zetaS > 0
fnS = fnS[valid_indices]
phiS = phiS[:, valid_indices]
MACS = MACS[valid_indices]
zetaS = zetaS[valid_indices]
# Normalize mode shape
for oo in range(phiS.shape[1]):
phiS[:, oo] = phiS[:, oo] / np.max(np.abs(phiS[:, oo]))
if np.diff(phiS[0:2, oo]) < 0:
phiS[:, oo] = -phiS[:, oo]
return fnS, zetaS, phiS, MACS
@timeit
def run_stability(self,U,S):
fn1_list = []
i_list = []
kk=0
fn2,zeta2,phi2,MAC,stability_status = {},{},{},{},{}
for i in range(self.Nmax,self.Nmin-1,-1):
if kk == 0:
fn0,zeta0,phi0 = self.modalID(U,S,i,self.Nc,self.fs)
else:
fn1,zeta1,phi1 = self.modalID(U,S,i,self.Nc,self.fs)
fn1_list.append(fn1)
i_list.append(i)
[a,b,c,d,e] = self.stabilityCheck(fn0,zeta0,phi0,fn1,zeta1,phi1)
fn2[kk-1]=a
zeta2[kk-1]=b
phi2[kk-1]=c
MAC[kk-1]=d
stability_status[kk-1]=e
fn0=fn1
zeta0=zeta1
phi0=phi1
kk = kk +1
return fn2 , zeta2, phi2, MAC, stability_status
def run(self):
IRF = self.NexT()
[U,S,V,T] = self.blockToeplitz(IRF)
# fn2, zeta2, phi2, MAC, stability_status = self.run_stability(U, S)
fn1_list = []
i_list = []
kk=0
fn2,zeta2,phi2,MAC,stability_status = {},{},{},{},{}
for i in range(self.Nmax,self.Nmin-1,-1):
if kk == 0:
fn0,zeta0,phi0 = self.modalID(U,S,i,self.Nc,self.fs)
else:
fn1,zeta1,phi1 = self.modalID(U,S,i,self.Nc,self.fs)
fn1_list.append(fn1)
i_list.append(i)
[a,b,c,d,e] = self.stabilityCheck(fn0,zeta0,phi0,fn1,zeta1,phi1)
fn2[kk-1]=a
zeta2[kk-1]=b
phi2[kk-1]=c
MAC[kk-1]=d
stability_status[kk-1]=e
fn0=fn1
zeta0=zeta1
phi0=phi1
kk = kk +1
fn2 , zeta2, phi2 = self.flip_dic(fn2), self.flip_dic(zeta2), self.flip_dic(phi2)
fnS,zetaS,phiS,MACS = self.getStablePoles(fn2,zeta2,phi2,MAC,stability_status)
return fnS,zetaS,phiS,MACS,stability_status, fn2