-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathDI_S_MMSE_Turbo.m
192 lines (159 loc) · 7.63 KB
/
DI_S_MMSE_Turbo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
clc;
close all;
addpath('functions')
%%%%%%%% = Parameters Initialization = %%%%%%%%%%
%%% Parameters of transmitter
M = 64; % the number of subcarriers
N = 32; % the number of time slots
lenCP = 16; % the length of CP per OTFS frame, lenCP > tau_max
P = 4; % the number of reflectors
% Encoder
Rc = 1/2; % Code Rate
mem = 2; % Memory order of the convolutional encoder
% Modulator
bitSet = [0 0; 1 0; 0 1; 1 1];
symSet = 1/sqrt(2)*[1+1i, -1+1i, 1-1i, -1-1i]; % Symbol Alphabet
numConste = 4; % the number of constellations
order = log2(numConste);
lenBit = M*N*order*Rc-mem; % the length of bit sequence
lenBit_tailed = M*N*order*Rc; % the length of bit sequence after adding trellis termination bits
lenCode = M*N*order; % the length of code sequence
lenSym = M*N; % the length of symbol sequence
% Interleaver
row_Intlvr = 64; % Parameters of the rectangular interleaver
col_intlvr = lenCode/row_Intlvr;
%%% Parameters of channel
tau_max = 10; % the maximum delay, tau_max <= M-1
nu_max = 6; % the maximum Doppler, nu_max <= N-1
%%% Parameters of receiver
% Sparsification
tol_A = 1e-3; % the threshold of Sparsification Guideline 1
maxDeg = P/4; % the threshold of Sparsification Guideline 2
% GMRES
tol_gmres = 1e-3; % the drop tolerance of GMRES
Restart = 5; % the restart parameter of GMRES
% FSPAI
tol_fspai = 1e-3; % the drop tolerance of FSPAI
maxiter_fspai = P; % the maximum node of degree of FSPAI
%%% Parameters of simulation
EbN0_dB = 6:2:12;
EbN0 = 10.^(EbN0_dB/10);
Es = 1; % the average energy of symbols
Eb = (lenSym+lenCP)*Es/lenBit; % the average energy of bits
sumSim = 500; % the number of simulations at each SNR
iterTimes = 5; % the number of Turbo iterations
BER = zeros(iterTimes, length(EbN0));
% Create a stucture array to store neccessary parameters
% to facilitate passing arguments
configs.M = M;
configs.N = N;
configs.lenCode = lenCode;
configs.tol_A = tol_A;
configs.maxDeg = maxDeg;
configs.tol_gmres = tol_gmres;
configs.Restart = Restart;
configs.tol_fspai = tol_fspai;
configs.maxiter_fspai = maxiter_fspai;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for snr = 1:length(EbN0_dB)
N0 = Eb/EbN0(snr);
%%% If you would like to speed up this code, you may use "parfor sim = 1:sumSim"
%%% so as to execute for-loop on a parallel pool of workers on your
%%% multi-core computer.
for sim = 1:sumSim
%%%%%%%% = Transmitter = %%%%%%%%%%
% = Generating Bit Stream = %
bit_seq = 1/2+1/2*sign( randn(lenBit_tailed, 1) );
bit_seq(lenBit+1:end) = zeros(1, mem);
% Trellis termination: force the final state of encoder to the all-zero state,
% which is leveraged in the backward recursion of BCJR algorithm.
% This overhead caused by trellis termination is also considered.
% = CC Encoder = %
code_seq = CC57(bit_seq);
% = Interleaver = %
code_intlvr = Rect_Interlvr( code_seq, row_Intlvr, col_intlvr);
% = Modulation = %
x_DD = zeros(lenSym, 1); % The DD domain transmitted symbol sequence
for nn = 0:lenSym-1
[~, posi] = min( sum( abs(code_intlvr(2*nn+1:2*nn+2)'-bitSet), 2) );
x_DD(nn+1) = symSet(posi);
end
% = ISFFT & Heisenberg Transform = %
x_T = ISFFT_Heisenberg(x_DD, M, N); % The time domain transmitted symbol sequence
%%%%%%%%% = Channel = %%%%%%%%%%%
% Randomly generate the channel gain, delay and Doppler shift
[h, Tau, Nu] = CSI_Generator(P, tau_max, nu_max);
% Derive the channel matrix in the time domain (ref equ. 7)
H_T = Generate_HT(M, N, h, Tau, Nu);
% Derive the channel matrix in the DD domain (ref equ. 13)
H_DD = Generate_HDD(M, N, h, Tau, Nu);
% Generate AWGN
n_T = sqrt(N0/2) * (randn(M*N, 1)+1i*randn(M*N, 1));
%%%%%%%%% = Receiver = %%%%%%%%%%%
y_T = H_T*x_T+n_T;
% = Wigner Transform & SFFT = %
y_DD = Wigner_SFFT(y_T, M, N);
% = DI-S-MMSE Equalizer = %
Bit_decod = zeros(lenBit, 1); % Initialize the decoded bit sequence
Mean = zeros(M*N, 1); % Initialize the vector of means of the transmitted symbols
Var = diag( ones(1, M*N) ); % Initialize the covariance matrix of the transmitted symbols
numErrors = zeros(iterTimes, length(EbN0)); % Initialize the BER of the current simulation
for iter = 1:iterTimes
% = MMSE Estimator = %
Lext12 = MMSE_estimator(y_DD, H_DD, N0, Tau, Nu, Mean, diag(Var), iter, configs);
% = Deinterleaver = %
Lext12_deintlvr = Rect_Deinterlvr(Lext12, row_Intlvr, col_intlvr);
% = Decoder using BCJR Algorithm = %
[Lext21_deintlvr, Lapp] = MAPDecoder(Lext12_deintlvr);
% = Interleaver = %
Lext21 = Rect_Interlvr( Lext21_deintlvr, row_Intlvr, col_intlvr);
% Step 3: Update the means and variances of each symbol
for nn = 0:M*N-1
Mean(nn+1) = 1/sqrt(2)*( tanh(Lext21(2*nn+1)/2)+1i*tanh(Lext21(2*nn+2)/2) );
Var(nn+1, nn+1) = 1-abs(Mean(nn+1))^2;
end
% = BER calculation = %
for nn = 0:lenBit-1
Bit_decod(nn+1) = 1/2*sign(-Lapp(nn+1))+1/2;
end
error = sum(abs(Bit_decod-bit_seq(1:lenBit)));
%%%% BER calculation
numErrors(iter, snr) = error;
end
BER = BER + numErrors/lenBit/sumSim;
%%% If you use parfor to speed up the calculation, please comment out
%%% the following code, which may cause errors in parfor loop.
clc
disp('===========================================================')
display(EbN0_dB, 'EbN0 (dB)');
display(sim, 'Current simulation index');
display(BER(1, :),'BER the 1st iteration');
display(BER(2, :),'BER of the 2nd iteration');
display(BER(5, :),'BER of the 5th iteration');
disp('===========================================================')
%%% If you use parfor to speed up the calculation, you may
%%% uncomment the following code to display current EbN0 and
%%% simulation index. This will allow you to monitor the progress of the simulation.
% clc
% display(EbN0_dB(snr), 'Current EbN0 (dB)');
% display(sim, 'Current simulation index');
% disp('===========================================================')
end
end
figure(1)
semilogy(EbN0_dB,BER(1,:),'-o','LineWidth',2,'Color',[0.25 0.41 0.88]);
hold on;
semilogy(EbN0_dB,BER(2,:),'-o','LineWidth',2,'Color',[0.24 0.57 0.25]);
hold on;
semilogy(EbN0_dB,BER(3,:),'-o','LineWidth',2,'Color',[1 0.5 0.31]);
hold on;
semilogy(EbN0_dB,BER(iterTimes,:),'-o','LineWidth',2,'Color',[0 0 0]);
hold on;
grid on;
str = ['iter','=', num2str(iterTimes)];
legend('iter=1', 'iter=2', 'iter=3', str);
axis([0,15,10^(-5),1]);
set(gcf, 'Color', [1,1,1]);
set(gca, 'Fontname', 'Times New Roman','FontSize',13);
xlabel('$E_{b} / N_{0}\ (\mathrm{dB})$','interpreter','latex','fontsize',14);
ylabel('BER','fontsize',14);