-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrail2.py
494 lines (399 loc) · 17.6 KB
/
trail2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from django.shortcuts import render, HttpResponse, redirect
from .models import ExcelFile
import re
from django.db.models import Q
from datetime import datetime
import pandas as pd
import plotly.express as px
import pandas as pd
import plotly.subplots as sp
import plotly.graph_objects as go
from django.urls import reverse
# Mapping of keywords to months
keyword_to_month = {
"JAN": "January",
"FEB": "February",
"MAR": "March",
"APR": "April",
"MAY": "May",
"JUN": "June",
"JUL": "July",
"AUG": "August",
"SEP": "September",
"OCT": "October",
"NOV": "November",
"DEC": "December",
}
months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
def home(request):
if request.method == "POST" and request.FILES.getlist("files"):
files = request.FILES.getlist("files")
for file in files:
filename = file.name
parts = filename.split()
project_name = " ".join(
parts[
3 : next(
(i for i, part in enumerate(parts) if part.isdigit()),
len(parts),
)
]
)
# Extract month and year from the filename
match = re.search(
r"\b(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)\b",
filename.upper(),
)
month = None
year = None
if match:
keyword = match.group(0)
month_str = keyword_to_month.get(keyword)
year_match = re.search(r"\b(\d{4})\b", filename)
if year_match:
year = int(year_match.group(0))
if month_str:
month = datetime.strptime(month_str, "%B").date()
if year:
month = month.replace(year=year)
else:
# If no year is found, default to the current year
current_year = datetime.now().year
month = month.replace(year=current_year)
excel_file = ExcelFile.objects.filter(filename=filename).first()
if excel_file:
# Update the file field and month of the existing object
excel_file.file = file
excel_file.month = month
excel_file.save()
else:
# Create a new ExcelFile object
ExcelFile.objects.create(
file=file,
month=month,
filename=filename,
project_name=project_name,
)
return render(request, 'index.html')
def line_graph_method(request):
if request.method == "POST":
month1 = request.POST.get("month1")
month2 = request.POST.get("month2")
field2 = request.POST.get("field2")
return redirect("line_graph", month1=month1, month2=month2, field2=field2)
return render(request, 'line.html', {'months':months})
def stacked_bar_method(request):
if request.method == "POST":
month1 = request.POST.get("month1")
month2 = request.POST.get("month2")
field = request.POST.get("field")
field2 = request.POST.get("field2")
# method = request.POST.get("method")
return redirect(
'display_files',
month1=month1,
month2=month2,
field=field,
field2=field2,
# method=method,
)
return render(request, 'bar.html', {'months':months})
def display_files(
request,
month1="January",
month2="February",
field="Location",
field2="Meter Name",
# method="Month",
):
# Convert month names to datetime objects
datetime_month1 = datetime.strptime(month1, "%B")
datetime_month2 = datetime.strptime(month2, "%B")
query = Q(
month__month__gt=datetime_month1.month, month__month__lte=datetime_month2.month
)
excel_files = ExcelFile.objects.filter(query)
if not excel_files:
# No data within the specified month range
message = f"<h1>No data available from {month1} to {month2}</h1>"
return HttpResponse(message)
# Create a dictionary to store the combined data for each month
combined_data_dict = {}
for excel_file in excel_files:
excel_file_path = excel_file.file.path
# Read Excel file into a DataFrame using pandas, skipping the first 10 rows and last row
df = pd.read_excel(excel_file_path, skiprows=10, skipfooter=1)
# Get the month of the current file
file_month = excel_file.month.strftime("%B")
# Get the project_name
project_name = excel_file.project_name
# if method == "Month":
if file_month not in combined_data_dict:
# If the month is not already in the dictionary, create a new key-value pair
combined_data_dict[file_month] = df
else:
# If the month is already in the dictionary, concatenate the DataFrame with the existing data
combined_data_dict[file_month] = pd.concat(
[combined_data_dict[file_month], df], ignore_index=True
)
# else:
# if project_name not in combined_data_dict:
# # If the month is not already in the dictionary, create a new key-value pair
# combined_data_dict[project_name] = df
# else:
# # If the month is already in the dictionary, concatenate the DataFrame with the existing data
# combined_data_dict[project_name] = pd.concat(
# [combined_data_dict[project_name], df], ignore_index=True
# )
# Create the Plotly subplots for the combined data
fig = sp.make_subplots(
rows=1,
cols=len(combined_data_dict),
subplot_titles=list(combined_data_dict.keys()),
)
col_num = 1
for month, combined_data in combined_data_dict.items():
combined_data_dict[month] = df[["Amount", field, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict[month] = combined_data_dict[month].merge(
df_grouped_field1, on=field, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict[month] = combined_data_dict[month].drop_duplicates(
subset=field
)
combined_data_dict[month] = combined_data_dict[month][
["Amount_sum", field, field2]
]
# Group by field2 and aggregate the amounts
df_grouped_field2 = df.groupby(field2)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict[month] = combined_data_dict[month].merge(
df_grouped_field2, on=field2, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict[month] = combined_data_dict[month].drop_duplicates(
subset=field2
)
combined_data_dict[month] = combined_data_dict[month][
["Amount_sum", field, field2]
]
if not combined_data.empty:
# Group the combined data by 'field' and 'field2' and calculate the sum of 'Amount'
grouped_data = (
combined_data.groupby([field, field2])["Amount"].sum().reset_index()
)
# Sort the data by 'Amount' in descending order for each 'field'
sorted_data = (
grouped_data.groupby(field)
.apply(lambda x: x.sort_values("Amount", ascending=False))
.reset_index(drop=True)
)
# Calculate the cumulative sum of 'Amount' for each 'field'
sorted_data["Cumulative Amount"] = sorted_data.groupby(field)[
"Amount"
].cumsum()
# Sort the data by 'Amount' in descending order
sorted_data = sorted_data.sort_values("Amount", ascending=False)
sorted_data = sorted_data.head(2)
# Calculate the total amount for each field
total_amount = sorted_data["Amount"].sum()
# Calculate the percentage taken for each row
sorted_data["Percentage Taken"] = (
sorted_data["Amount"] / total_amount
) * 100
# Add the stacked bar traces to the subplot
for i, row in sorted_data.iterrows():
# Get the color for the current field2 value
color = px.colors.qualitative.Alphabet[
i % len(px.colors.qualitative.Alphabet)
]
fig.add_trace(
go.Bar(
x=[row[field]],
y=[row["Amount"]],
name=row[field2],
marker_color=color,
# text=f"Amount: {row['Amount']:.2f}<br>{row['Percentage Taken']:.2f}%",
text=f"Amount: {row['Amount']:.2f}",
textposition="auto",
),
row=1,
col=col_num,
)
col_num += 1
# Update the subplot layout
fig.update_layout(
title="Stacked Bar Graph by Month",
showlegend=False,
xaxis=dict(title=field),
yaxis=dict(title="Amount"),
barmode="stack",
)
# Add a button linking to the /upload URL
upload_url = reverse(
"home"
) # Assuming the URL name for the upload_file view is "upload_file"
upload_button = f'<a href="{upload_url}" style="background-color: #4CAF50;color: white;padding: 10px 20px;border-radius: 5px;cursor: pointer;text-decoration:None;">Go to Home</a>'
graph_html = f"{upload_button}<br><br>" + fig.to_html(full_html=False)
# Create the Django response
response = HttpResponse(content_type="text/html")
# Write the graph HTML to the response
response.write(graph_html)
return response
def line_graph(request, month1, month2, field2, field1="Resource Group Name"):
# Convert month names to datetime objects
datetime_month1 = datetime.strptime(month1, "%B")
datetime_month2 = datetime.strptime(month2, "%B")
query = Q(
month__month__gte=datetime_month1.month, month__month__lte=datetime_month2.month
)
excel_files = ExcelFile.objects.filter(query).order_by('month')
if not excel_files:
# No data within the specified month range
message = f"<h1>No data available from {month1} to {month2}</h1>"
return HttpResponse(message)
# Create a dictionary to store the combined data for each month
combined_data_dict = {}
combined_data_dict1 = {}
for excel_file in excel_files:
excel_file_path = excel_file.file.path
# Read Excel file into a DataFrame using pandas, skipping the first 10 rows and last row
df = pd.read_excel(excel_file_path, skiprows=10, skipfooter=1)
# Get the month of the current file
file_month = excel_file.month.strftime("%B")
if file_month not in combined_data_dict:
# If the month is not already in the dictionary, create a new key-value pair
combined_data_dict[file_month] = df
combined_data_dict1[file_month] = df
else:
# If the month is already in the dictionary, concatenate the DataFrame with the existing data
combined_data_dict[file_month] = pd.concat(
[combined_data_dict[file_month], df], ignore_index=True
)
combined_data_dict1[file_month] = pd.concat(
[combined_data_dict1[file_month], df], ignore_index=True
)
# Keep only 'Amount', field1, and field2 columns in each DataFrame
for month, df in combined_data_dict.items():
combined_data_dict[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict[month] = combined_data_dict[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict[month] = combined_data_dict[month].drop_duplicates(
subset=field1
)
combined_data_dict[month] = combined_data_dict[month][
["Amount", field1, field2]
]
for month, df in combined_data_dict1.items():
combined_data_dict1[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field1
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Group by field2 and aggregate the amounts
df_grouped_field2 = df.groupby(field2)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field2, on=field2, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field2
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Combine unique values of field1
combined_field1_values = sorted(list(set(item for sublist in [df[field1].tolist() for df in combined_data_dict.values()] for item in sublist)))
combined_field2_values = sorted(list(set(item for sublist in [df[field2].tolist() for df in combined_data_dict1.values()] for item in sublist)))
context = {
'combined_field1_values': combined_field1_values,
'combined_field2_values': combined_field2_values,
'field2': field2,
}
if request.method == 'POST':
field1value = request.POST.get('field1value')
field2value = request.POST.get('field2value')
if field2value is not None:
# Combine unique values of field1 and field2
combined_field2_values = sorted(list(set(item for sublist in [df[field2].tolist() for df in combined_data_dict.values()] for item in sublist)))
context['combined_field2_values'] = combined_field2_values
if field2value == 'All':
amounts_dict = {} # Dictionary to store amounts for each field2 value
for field2_val in combined_field2_values:
amounts = [] # List to store the amounts
for month, df in combined_data_dict1.items():
# Search for the row in the column field2 matching the field2_val
row = df[df[field2] == field2_val]
if len(row) > 0:
# If the row is present, get the corresponding amount
amount = row['Amount'].iloc[0]
else:
# If the row is not present, consider the amount as zero
amount = 0
amounts.append(amount)
amounts_dict[field2_val] = amounts
# Plotting the line graph
months = list(combined_data_dict1.keys())
fig = go.Figure()
for field2_val, amounts in amounts_dict.items():
fig.add_trace(go.Scatter(x=months, y=amounts, mode='lines+markers', name=field2_val))
fig.update_layout(title=f'Amount for "{field1value}" in each month', xaxis_title='Month', yaxis_title='Amount')
fig.show()
else:
amounts = [] # List to store the amounts
for month, df in combined_data_dict1.items():
# Search for the row in the column field2 matching the field2value value
row = df[df[field2] == field2value]
if len(row) > 0:
# If the row is present, get the corresponding amount
amount = row['Amount'].iloc[0]
else:
# If the row is not present, consider the amount as zero
amount = 0
amounts.append(amount)
# Plotting the line graph and pie chart
months = list(combined_data_dict1.keys())
fig = sp.make_subplots(rows=1, cols=1, subplot_titles=[
f'Amount for "{field2value}" in "{field1value}" in each month'
])
# Line graph
fig.add_trace(go.Scatter(x=months, y=amounts, mode='markers+lines+text', fillcolor='red'), row=1, col=1)
fig.update_xaxes(title='Month', row=1, col=1)
fig.update_yaxes(title='Amount', row=1, col=1)
# Pie chart (using a separate figure)
# pie_fig = go.Figure(data=[go.Pie(labels=months, values=amounts, hoverinfo='label+percent')])
# pie_fig.update_layout(title=f'Proportions of Amount for "{field2value} in "{field1value}"')
fig.show()
# pie_fig.show()
return render(request, 'choose.html', context)