-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrail3.py
391 lines (333 loc) · 13.7 KB
/
trail3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def line_graph(
request,
month1="January",
month2="December",
field2="Category",
field1="Resource Group Name",
):
if request.method == "POST":
month1 = request.POST.get("month1")
month2 = request.POST.get("month2")
field2 = request.POST.get("field2")
field1value = request.POST.get("field1value")
# field2value = request.POST.get("field2value")
# Convert month names to datetime objects
datetime_month1 = datetime.strptime(month1, "%B")
datetime_month2 = datetime.strptime(month2, "%B")
query = Q(
month__month__gte=datetime_month1.month,
month__month__lte=datetime_month2.month,
)
excel_files = ExcelFile.objects.filter(query).order_by("month")
if not excel_files:
# No data within the specified month range
message = f"<h1>No data available from {month1} to {month2}</h1>"
return HttpResponse(message)
# Create a dictionary to store the combined data for each month
combined_data_dict = {}
combined_data_dict1 = {}
for excel_file in excel_files:
excel_file_path = excel_file.file.path
# Read Excel file into a DataFrame using pandas, skipping the first 10 rows and last row
df = pd.read_excel(excel_file_path, skiprows=10, skipfooter=1)
# Get the month of the current file
file_month = excel_file.month.strftime("%B")
if file_month not in combined_data_dict:
# If the month is not already in the dictionary, create a new key-value pair
combined_data_dict[file_month] = df
combined_data_dict1[file_month] = df
else:
# If the month is already in the dictionary, concatenate the DataFrame with the existing data
combined_data_dict[file_month] = pd.concat(
[combined_data_dict[file_month], df], ignore_index=True
)
combined_data_dict1[file_month] = pd.concat(
[combined_data_dict1[file_month], df], ignore_index=True
)
# Keep only 'Amount', field1, and field2 columns in each DataFrame
for month, df in combined_data_dict.items():
combined_data_dict[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict[month] = combined_data_dict[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict[month] = combined_data_dict[month].drop_duplicates(
subset=field1
)
combined_data_dict[month] = combined_data_dict[month][
["Amount", field1, field2]
]
for month, df in combined_data_dict1.items():
combined_data_dict1[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field1
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Group by field2 and aggregate the amounts
df_grouped_field2 = df.groupby(field2)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field2, on=field2, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field2
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Combine unique values of field1
combined_field1_values = sorted(
list(
set(
item
for sublist in [
df[field1].tolist() for df in combined_data_dict.values()
]
for item in sublist
)
)
)
combined_field2_values = sorted(
list(
set(
item
for sublist in [
df[field2].tolist() for df in combined_data_dict1.values()
]
for item in sublist
)
)
)
# if field2value == "All":
amounts_dict = {} # Dictionary to store amounts for each field2 value
for field2_val in combined_field2_values:
amounts = [] # List to store the amounts
for month, df in combined_data_dict1.items():
# Search for the row in the column field2 matching the field2_val
row = df[df[field2] == field2_val]
if len(row) > 0:
# If the row is present, get the corresponding amount
amount = row["Amount"].iloc[0]
else:
# If the row is not present, consider the amount as zero
amount = 0
amounts.append(amount)
amounts_dict[field2_val] = amounts
# Plotting the line graph
months = list(combined_data_dict1.keys())
fig = go.Figure()
# Create traces
for index, (field2_val, amounts) in enumerate(amounts_dict.items()):
trace = go.Scatter(
x=months, y=amounts, mode="lines+markers", name=field2_val
)
# Set visibility property for the first three traces to "True", "legendonly" for the rest
if index < 3:
trace.visible = True
else:
trace.visible = "legendonly"
fig.add_trace(trace)
# Add button to toggle visibility of all traces
fig.update_layout(
updatemenus=[
dict(
type="buttons",
buttons=[
dict(
label="Toggle All",
method="update",
args=[
{"visible": [True] * len(fig.data)}
], # Show all traces
),
dict(
label="Reset",
method="update",
args=[
{
"visible": [True]
+ ["legendonly"] * (len(fig.data) - 1)
}
], # Reset visibility to initial state
),
],
)
]
)
# Customize x-axis labels to display month and year
month_years = [
f"{month} {excel_file.month.year}"
for month, excel_file in zip(months, excel_files)
]
fig.update_layout(
xaxis=dict(
tickmode="array",
tickvals=months,
ticktext=month_years,
title="Month",
),
yaxis=dict(title="Amount"),
title=f'Amount for "{field1value}" in "{field2}" from {month1} to {month2}',
)
# fig.show()
# return render(request, 'index.html')
months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
div = pio.to_html(fig, full_html=False)
print(month1, month2, field1, field2, field1value)
context2 = {
"combined_field1_values": combined_field1_values,
"combined_field2_values": combined_field2_values,
"months": months,
"graph": div,
}
print("Hey")
return render(request, "show.html", context2)
###################################################################################################################
print("HIIII")
# Convert month names to datetime objects
datetime_month1 = datetime.strptime(month1, "%B")
datetime_month2 = datetime.strptime(month2, "%B")
query = Q(
month__month__gte=datetime_month1.month, month__month__lte=datetime_month2.month
)
excel_files = ExcelFile.objects.filter(query).order_by("month")
if not excel_files:
# No data within the specified month range
message = f"<h1>No data available from {month1} to {month2}</h1>"
return HttpResponse(message)
# Create a dictionary to store the combined data for each month
combined_data_dict = {}
combined_data_dict1 = {}
for excel_file in excel_files:
excel_file_path = excel_file.file.path
# Read Excel file into a DataFrame using pandas, skipping the first 10 rows and last row
df = pd.read_excel(excel_file_path, skiprows=10, skipfooter=1)
# Get the month of the current file
file_month = excel_file.month.strftime("%B")
if file_month not in combined_data_dict:
# If the month is not already in the dictionary, create a new key-value pair
combined_data_dict[file_month] = df
combined_data_dict1[file_month] = df
else:
# If the month is already in the dictionary, concatenate the DataFrame with the existing data
combined_data_dict[file_month] = pd.concat(
[combined_data_dict[file_month], df], ignore_index=True
)
combined_data_dict1[file_month] = pd.concat(
[combined_data_dict1[file_month], df], ignore_index=True
)
# Keep only 'Amount', field1, and field2 columns in each DataFrame
for month, df in combined_data_dict.items():
combined_data_dict[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict[month] = combined_data_dict[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict[month] = combined_data_dict[month].drop_duplicates(
subset=field1
)
combined_data_dict[month] = combined_data_dict[month][
["Amount", field1, field2]
]
for month, df in combined_data_dict1.items():
combined_data_dict1[month] = df[["Amount", field1, field2]]
# Group by field1 and aggregate the amounts
df_grouped_field1 = df.groupby(field1)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field1, on=field1, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field1
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Group by field2 and aggregate the amounts
df_grouped_field2 = df.groupby(field2)["Amount"].sum().reset_index()
# Update the DataFrame with the aggregated amounts
combined_data_dict1[month] = combined_data_dict1[month].merge(
df_grouped_field2, on=field2, suffixes=("", "_sum")
)
# Drop duplicate rows and unnecessary columns
combined_data_dict1[month] = combined_data_dict1[month].drop_duplicates(
subset=field2
)
combined_data_dict1[month] = combined_data_dict1[month][
["Amount", field1, field2]
]
# Combine unique values of field1
combined_field1_values = sorted(
list(
set(
item
for sublist in [
df[field1].tolist() for df in combined_data_dict.values()
]
for item in sublist
)
)
)
combined_field2_values = sorted(
list(
set(
item
for sublist in [
df[field2].tolist() for df in combined_data_dict1.values()
]
for item in sublist
)
)
)
months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
context = {
"combined_field1_values": combined_field1_values,
"combined_field2_values": combined_field2_values,
# "field2": field2,
"months": months,
}
return render(request, "show.html", context)
# return HttpResponse('Hey')