-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusingPlotly.py
237 lines (191 loc) · 7.22 KB
/
usingPlotly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import pandas as pd
import dash
from dash import dcc, html
from dash.dependencies import Input, Output, State
import base64, io
import plotly.graph_objs as go
# Initialize the Dash application
app = dash.Dash(__name__)
# Define the layout of the application
app.layout = html.Div(
[
html.H1("Bar, Tree and Tabular Representation"),
html.Hr(),
dcc.Upload(
id="upload-data",
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
style={
"width": "50%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin": "10px 0",
},
multiple=False,
),
dcc.Dropdown(
id="column-dropdown",
options=[],
placeholder="Select column",
multi=False,
style={"width": "60%", "margin": "20px 0"},
),
html.Div(
[
html.H3("Tabular Columns"),
dcc.Dropdown(
id="row-dropdown",
options=[],
placeholder="Select row",
multi=True,
style={"width": "60%", "margin": "20px 0"},
),
html.Link(rel="stylesheet", href="/assets/styles.css"),
html.Div(id="selected-rows", className="styled-table"),
]
),
html.Div(
[
html.Div([dcc.Graph(id="bar-chart")], className="six columns"),
html.Div([dcc.Graph(id="alternative-chart")], className="six columns"),
],
className="row",
),
]
)
# Store the DataFrame in app UserData
def store_dataframe(contents):
if contents is not None:
content_type, content_string = contents.split(",")
# Decode the file contents
decoded = base64.b64decode(content_string)
# Read the Excel file into a DataFrame
df = pd.read_excel(io.BytesIO(decoded))
app.userData["dataframe"] = df
# Callback function to handle file upload and populate the dropdown options
@app.callback(Output("column-dropdown", "options"), Input("upload-data", "contents"))
def update_dropdown(contents):
if contents is not None:
store_dataframe(contents)
# Retrieve the stored DataFrame
df = app.userData.get("dataframe")
# Create dropdown options from column names
options = [{"label": col, "value": col} for col in df.columns]
return options
return []
# Callback function to display the bar chart
@app.callback(Output("bar-chart", "figure"), Input("column-dropdown", "value"))
def display_bar_chart(selected_column):
if selected_column:
# Retrieve the stored DataFrame
df = app.userData.get("dataframe")
# Group by the selected column and sum the Amount
grouped_df = df.groupby(selected_column)["Amount"].sum().reset_index()
# Calculate the percentages
grouped_df["percentage"] = (
grouped_df["Amount"] / grouped_df["Amount"].sum() * 100
)
grouped_df=grouped_df.sort_values('Amount', ascending=False)
# Create the bar chart
data = [
go.Bar(
x=grouped_df[selected_column],
y=grouped_df["Amount"],
marker=dict(color="rgb(65,105,225)"),
text=grouped_df["percentage"].round(2).astype(str) + "%",
textposition="auto",
)
]
layout = go.Layout(
title=f"Bar Chart: {selected_column}",
xaxis=dict(title=selected_column),
yaxis=dict(title="Amount"),
)
return go.Figure(data=data, layout=layout)
return {}
# Callback function to display the alternative chart
@app.callback(Output("alternative-chart", "figure"), Input("column-dropdown", "value"))
def display_alternative_chart(selected_column):
if selected_column:
# Retrieve the stored DataFrame
df = app.userData.get("dataframe")
# Group by the selected column and sum the Amount
grouped_df = df.groupby(selected_column)["Amount"].sum().reset_index()
# Calculate the percentages
grouped_df["percentage"] = (
grouped_df["Amount"] / grouped_df["Amount"].sum() * 100
)
# Create the alternative chart using a treemap
data = [
go.Treemap(
labels=grouped_df[selected_column],
parents=[""]
* len(
grouped_df
), # Set all parents to empty string to create a single-level treemap
values=grouped_df["Amount"],
text=grouped_df["percentage"].round(2).astype(str) + "%",
hovertemplate="Label: %{label}<br>Value: %{value}<br>Percentage: %{text}",
textinfo="label+value+text",
branchvalues="total",
marker_colors=grouped_df["Amount"], # Color based on Amount values
# hovertemplate="%{label}<br>Amount: %{color:.2f}",
)
]
layout = go.Layout(
title=f"Treemap: {selected_column}",
)
return go.Figure(data=data, layout=layout)
return {}
# Callback function to populate the row dropdown options based on the selected column
@app.callback(Output("row-dropdown", "options"), Input("column-dropdown", "value"))
def update_row_dropdown(selected_column):
if selected_column:
# Retrieve the stored DataFrame
df = app.userData.get("dataframe")
# Get unique values from the selected column
unique_values = df[selected_column].unique()
# Create dropdown options from unique values
options = [{"label": str(value), "value": value} for value in unique_values]
return options
return []
# Callback function to display the selected rows
@app.callback(
Output("selected-rows", "children"),
Input("row-dropdown", "value"),
State("column-dropdown", "value"),
)
def display_selected_rows(selected_rows, selected_column):
if selected_rows and selected_column:
# Retrieve the stored DataFrame
df = app.userData.get("dataframe")
# Filter the DataFrame based on selected rows and column
filtered_df = df[df[selected_column].isin(selected_rows)]
# Convert the filtered DataFrame to an HTML table
table = html.Table(
[
html.Thead(html.Tr([html.Th(col) for col in filtered_df.columns])),
html.Tbody(
[
html.Tr([html.Td(str(value)) for value in row])
for row in filtered_df.values
]
),
],
className="styled-table",
)
return table
return ""
# Add CSS styles for the table
app.css.append_css(
{
"external_url": "https://cdn.jsdelivr.net/npm/semantic-ui@2.0.8/dist/semantic.min.css"
}
)
# Run the Dash application
if __name__ == "__main__":
app.userData = {} # Initialize app UserData
app.run_server(debug=True)