Skip to content

Latest commit

 

History

History
447 lines (350 loc) · 19.5 KB

README.md

File metadata and controls

447 lines (350 loc) · 19.5 KB

Using MAGMA to find causative celltypes for genetically complex traits using MAGMA

Nathan Skene & Julien Bryois 2020-12-03

Introduction

This R package contains code used for testing which cell types can explain the heritability signal from GWAS summary statistics. The method was described in our 2018 Nature Genetics paper, “Genetic identification of brain cell types underlying schizophrenia”. This package takes GWAS summary statistics & Single Cell Transcriptome specificity data (in EWCE’s CTD format) as input. As output it calculates the associations between the GWAS trait and the celltypes.

Installation

Before installing this package it is neccesary to install the magma software package. Please download it from https://ctg.cncr.nl/software/magma. Please do note, the magma software which forms the backend of this package was developed by Christian de Leeuw from Daniella Posthuma’s lab. If you use this package to generate publishable results then you must cite their publication (listed below).

The magma executable should be copied to a directory that is on the $PATH (e.g. ‘/usr/local/bin’) so that R can find it. Alternatively you can download it to whereever you want to and add the folder containing it to your PATH. That is, if you’ve placed the file in ‘~/Packages/’ and you use bash (instead of e.g. zsh) then add to ‘~/.bash_profile’ this line “export PATH=~/Packages/magma:$PATH”. Then install this package as follows:

if(!"devtools" %in% row.names(installed.packages())){
  install.packages("devtools")
}
library(devtools)

if(!"EWCE" %in% row.names(installed.packages())){
  install_github("NathanSkene/EWCE")
}
library(EWCE) 

if(!"MAGMA.Celltyping" %in% row.names(installed.packages())){
  install_github("NathanSkene/MAGMA_Celltyping")
}
library(MAGMA.Celltyping) # Note the "." instead of "_"

if(!"One2One" %in% row.names(installed.packages())){
  devtools::install_github("NathanSkene/One2One")
}
library(One2One)

Using the package (basic usage)

Set parameters to be used for the analysis

Specify where you want the large files to be downloaded to.

storage_dir <- "~/Downloads"
# Set path the 1000 genomes reference data.
genome_ref_dir = file.path(storage_dir,"g1000_eur")
if(!file.exists(sprintf("%s/g1000_eur.bed",genome_ref_dir))){
    download.file("https://ctg.cncr.nl/software/MAGMA/ref_data/g1000_eur.zip",destfile=sprintf("%s.zip",genome_ref_dir))
    unzip(sprintf("%s.zip",genome_ref_dir),exdir=genome_ref_dir)
}
genome_ref_path = sprintf("%s/g1000_eur",genome_ref_dir)

Install and load all the required R packages and data

The EWCE package comes with a celltype specificity dataset which we use as an example. If you want to import your own single cell RNA-seq dataset, then this needs converting into CTD format; please see the EWCE tutorial (https://github.com/NathanSkene/EWCE/) for explanation of how to do this.

The One2One package is used to obtain 1:1 orthologs.

# Load the celltype data
data(ctd)

# Load the mouse to human 1:1 orthologs from the One2One package
data(ortholog_data_Mouse_Human)

Note that the cell type dataset loaded in the code above is the Karolinksa cortex/hippocampus data only. For the full Karolinska dataset with hypothalamus and midbrain instead use the following:

data(ctd_allKI)

Or for the DRONC seq or AIBS datasets use

data(ctd_Tasic)
data(ctd_DivSeq)
data(ctd_AIBS)
data(ctd_DRONC_human)
data(ctd_DRONC_human)

Prepare quantile groups for celltypes

First we need to calculate the quantile groups for each celltype within the single cell dataset. This is done using the prepare.quantile.groups function. If your single cell dataset is not from mouse, then change the specificity_species argument. If you wish to use a smaller number of bins then

ctd = prepare.quantile.groups(ctd,specificity_species="mouse",numberOfBins=40)

# Examine how the quantile groups look
print(ctd[[1]]$specificity_quantiles[c("Gfap","Dlg4","Aif1"),])
print(table(ctd[[1]]$specificity_quantiles[,1]))

Download summary statistics file & check it is properly formatted

We need to have a summary statistics file to analyse as input. As an example download summary statistics for Fluid Intelligence, based on the UK Biobank, generated by Ben Neale’s group.

The function format_sumstats_for_magma does some basic processing to get it into the right format. Please note, this function is NOT guarenteed to work. It will work on some sumstats but until the community gets it’s act together and standardises how we share these, it is not possible to write a generic function for this. If it doesn’t work then what you will need to roll your sleeves up and just reformat the file yourself such that the following criteria are met:

  • SNP, CHR, BP as first three columns.
  • It has at least one of these columns: (“Z”,“OR”,“BETA”,“LOG_ODDS”,“SIGNED_SUMSTAT”)
  • It has all of these columns: (“SNP”,“CHR”,“BP”,“P”,“A1”,“A2”)

The UK Biobank data from Ben Neale uses GRCh37 so hit ‘1’ when it asks. If you’re using your own data and it asks you’ll need to check this.

# Download and unzip the summary statistics file
library(R.utils)
gwas_sumstats_path = file.path(storage_dir,"20016_irnt.gwas.imputed_v3.both_sexes.tsv")
if(!file.exists(gwas_sumstats_path)){
    #download.file("https://www.dropbox.com/s/shsiq0brkax886j/20016.assoc.tsv.gz?raw=1",destfile=sprintf("%s.gz",gwas_sumstats_path))
    download.file("https://www.dropbox.com/s/t3lrfj1id8133sx/20016_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=1",destfile=sprintf("%s.gz",gwas_sumstats_path))
    gunzip(sprintf("%s.gz",gwas_sumstats_path),gwas_sumstats_path)
}

# Format it (i.e. column headers etc)
tmpSumStatsPath = format_sumstats_for_magma(path=gwas_sumstats_path)
gwas_sumstats_path_formatted = sprintf("%s.formatted",gwas_sumstats_path)
file.copy(from=tmpSumStatsPath,to=gwas_sumstats_path_formatted,overwrite = TRUE)

Map SNPs to Genes

genesOutPath = map.snps.to.genes(path_formatted=gwas_sumstats_path_formatted,
                                 genome_ref_path=genome_ref_path)

Run the main cell type association analysis

The analyses can be run in either linear or top10% enrichment modes. Let’s start with linear:

ctAssocsLinear = calculate_celltype_associations(ctd=ctd,
                                                 gwas_sumstats_path=gwas_sumstats_path_formatted,
                                                 genome_ref_path=genome_ref_path,
                                                 specificity_species = "mouse")
FigsLinear = plot_celltype_associations(ctAssocs=ctAssocsLinear,
                                        ctd=ctd)

Now let’s add the top 10% mode

ctAssocsTop = calculate_celltype_associations(ctd=ctd,
                                              gwas_sumstats_path=gwas_sumstats_path_formatted,
                                              genome_ref_path=genome_ref_path,
                                              EnrichmentMode="Top 10%")
FigsTopDecile = plot_celltype_associations(ctAssocs=ctAssocsTop,
                                           ctd=ctd)

Then plot linear together with the top decile mode

ctAssocMerged = merge_magma_results(ctAssoc1=ctAssocsLinear,
                                    ctAssoc2=ctAssocsTop)
FigsMerged = plot_celltype_associations(ctAssocs=ctAssocMerged,
                                        ctd=ctd)

Run the conditional cell type association analysis (linear mode)

By default, it is assumed that you want to run the linear enrichment analysis. There are two modes for conditional analyses, you can either control for the top N cell types from the baseline analysis (in which case, set controlTopNcells) or control for specific specified cell types (in which case, set controlledCTs).

# Conditional analysis
ctCondAssocs = calculate_conditional_celltype_associations(ctd,gwas_sumstats_path_formatted,genome_ref_path=genome_ref_path,analysis_name = "Conditional",controlTopNcells=2)
plot_celltype_associations(ctCondAssocs,ctd=ctd)

Let’s try as an alternative to control for expression of both the level 1 pyramidal neuron types at the same time

ctCondAssocs = calculate_conditional_celltype_associations(ctd,gwas_sumstats_path_formatted,genome_ref_path=genome_ref_path,analysis_name = "Conditional",controlledCTs=c("pyramidal CA1","pyramidal SS","interneurons"),controlledAnnotLevel=1)
plot_celltype_associations(ctCondAssocs,ctd=ctd)

Note that Periventricular Microglia (PVM) go from totally non-significant to significant once the neurons are controlled for. Test if this change is significant as follows:

magma1 = ctCondAssocs[[2]]$results[ctCondAssocs[[2]]$results$CONTROL=="BASELINE",]
magma2 = ctCondAssocs[[2]]$results[ctCondAssocs[[2]]$results$CONTROL=="pyramidal CA1,pyramidal SS,interneurons",]
resCompared = compare.trait.enrichments(magma1=magma1,magma2=magma2,annotLevel=2,ctd=ctd)
resCompared[1:3,]

Using this approach we can see that the increased enrichment is microglia in the controlled analysis is almost significantly increased relative to the baseline analysis.

Conditional analyses (top 10% mode)

Conditional analyses can also be performed with top 10% mode (although the conditioning is done in linear mode)

ctCondAssocsTopTen = calculate_conditional_celltype_associations(ctd,gwas_sumstats_path_formatted,genome_ref_path=genome_ref_path,analysis_name = "Conditional",controlledCTs=c("pyramidal CA1","pyramidal SS","interneurons"),controlledAnnotLevel=1,EnrichmentMode = "Top 10%")
plot_celltype_associations(ctCondAssocsTopTen,ctd=ctd)

Controlling for a second GWAS

We now want to test enrichments that remain in a GWAS after we control for a second GWAS. So let’s download a second GWAS sumstats file and prepare it for analysis.

20018.assoc.tsv is the sumstats file for ‘Prospective memory result’ from the UK Biobank.

20016.assoc.tsv is the sumstats file for ‘Fluid Intelligence Score’ from the UK Biobank.

So let’s subtract genes associated with prospective memory from those involved in fluid intelligence.

Download and prepare the ‘Prospective memory’ GWAS summary statistics

# Download and unzip the summary statistics file
library(R.utils)
gwas_sumstats_path = "~/Downloads/20018.gwas.imputed_v3.both_sexes.tsv"
if(!file.exists(gwas_sumstats_path)){
    download.file("https://www.dropbox.com/s/j6mde051pl8k8vu/20018.gwas.imputed_v3.both_sexes.tsv.bgz?dl=1",destfile=sprintf("%s.gz",gwas_sumstats_path))
    gunzip(sprintf("%s.gz",gwas_sumstats_path),gwas_sumstats_path)
}

# Format & map SNPs to genes
tmpSumStatsPath = format_sumstats_for_magma(gwas_sumstats_path)
gwas_sumstats_path_formatted = sprintf("%s.formatted",gwas_sumstats_path)
file.copy(from=tmpSumStatsPath,to=gwas_sumstats_path_formatted,overwrite = TRUE)

genesOutPath = map.snps.to.genes(gwas_sumstats_path_formatted,genome_ref_path=genome_ref_path)

Check which cell types this GWAS is associated with at baseline

gwas_sumstats_path_Memory = "~/Downloads/20018.gwas.imputed_v3.both_sexes.tsv.formatted"
gwas_sumstats_path_Intelligence = "~/Downloads/20016.gwas.imputed_v3.both_sexes.tsv.formatted"
ctAssocsLinearMemory = calculate_celltype_associations(ctd,gwas_sumstats_path_Memory,genome_ref_path=genome_ref_path,specificity_species = "mouse")
ctAssocsLinearIntelligence = calculate_celltype_associations(ctd,gwas_sumstats_path_Intelligence,genome_ref_path=genome_ref_path,specificity_species = "mouse")
plot_celltype_associations(ctAssocsLinearMemory,ctd=ctd)

Compare enrichments in the two GWAS using a tile plot

ctAssocMerged_MemInt = merge_magma_results(ctAssocsLinearMemory,ctAssocsLinearIntelligence)
FigsMerged_MemInt = magma.tileplot(ctd=ctd,results=ctAssocMerged_MemInt[[1]]$results,annotLevel=1,fileTag="Merged_MemInt_lvl1",output_path = "~/Desktop")
FigsMerged_MemInt = magma.tileplot(ctd=ctd,results=ctAssocMerged_MemInt[[2]]$results,annotLevel=2,fileTag="Merged_MemInt_lvl2",output_path = "~/Desktop")

Check which cell types ‘Fluid Intelligence’ is associated with after controlling for ‘Prospective memory’

# Set paths for GWAS sum stats + .genes.out file (with the z-scores)
gwas_sumstats_path = gwas_sumstats_path_Intelligence # "/Users/natske/GWAS_Summary_Statistics/20016.assoc.tsv"
memoryGenesOut = sprintf("%s.genes.out",get.magma.paths(gwas_sumstats_path_Memory,upstream_kb = 10,downstream_kb = 1.5)$filePathPrefix)

ctAssocsLinear = calculate_celltype_associations(ctd,gwas_sumstats_path,genome_ref_path=genome_ref_path,specificity_species = "mouse",genesOutCOND=memoryGenesOut,analysis_name = "ControllingForPropMemory")
FigsLinear = plot_celltype_associations(ctAssocsLinear,ctd=ctd,fileTag = "ControllingForPropMemory")

We find that after controlling for prospective memory, there is no significant enrichment left associated with fluid intelligence.

Calculate cell type enrichments directly (using linear model)

magmaGenesOut = adjust.zstat.in.genesOut(ctd,magma_file="/Users/natske/GWAS_Summary_Statistics/MAGMA_Files/20016.assoc.tsv.10UP.1.5DOWN/20016.assoc.tsv.10UP.1.5DOWN.genes.out",sctSpecies="mouse")
output = calculate.celltype.enrichment.probabilities.wtLimma(magmaAdjZ=magmaGenesOut,ctd,thresh=0.0001,sctSpecies="mouse",annotLevel=4)

We can then get the probability of the celltype being enriched as follows

print(sort(output))

The results should closely resemble those obtained using MAGMA

Gene set enrichments

To test whether a gene set (in HGNC or MGI format) is enriched using MAGMA the following commands can be used:

data("rbfox_binding")
gwas_sumstats_path = "/Users/natske/GWAS_Summary_Statistics/20016.assoc.tsv"
geneset_res = calculate_geneset_enrichment(geneset=rbfox_binding,gwas_sumstats_path=gwas_sumstats_path,analysis_name="Rbfox_20016",upstream_kb=10,downstream_kb=1.5,genome_ref_path=genome_ref_path,geneset_species="mouse")
print(geneset_res)

We can then test whether the geneset is still enriched after controlling for celltype enrichment:

data(ctd_allKI)
ctd = prepare.quantile.groups(ctd,specificity_species="mouse",numberOfBins=40)
analysis_name="Rbfox_16_pyrSS"
controlledCTs = c("pyramidal SS")
cond_geneset_res_pyrSS = calculate_conditional_geneset_enrichment(geneset,ctd,controlledAnnotLevel=1,controlledCTs,gwas_sumstats_path,analysis_name=analysis_name,genome_ref_path=genome_ref_path,specificity_species = "mouse")
controlledCTs = c("pyramidal CA1")
cond_geneset_res_pyrCA1 = calculate_conditional_geneset_enrichment(geneset,ctd,controlledAnnotLevel=1,controlledCTs,gwas_sumstats_path,analysis_name=analysis_name,genome_ref_path=genome_ref_path,specificity_species = "mouse")
controlledCTs = c("pyramidal CA1","pyramidal SS")
cond_geneset_res_pyr = calculate_conditional_geneset_enrichment(geneset,ctd,controlledAnnotLevel=1,controlledCTs,gwas_sumstats_path,analysis_name=analysis_name,genome_ref_path=genome_ref_path,specificity_species = "mouse")
controlledCTs = c("Medium Spiny Neuron")
cond_geneset_res_MSN = calculate_conditional_geneset_enrichment(geneset,ctd,controlledAnnotLevel=1,controlledCTs,gwas_sumstats_path,analysis_name=analysis_name,genome_ref_path=genome_ref_path,specificity_species = "mouse")
controlledCTs = c("Medium Spiny Neuron","pyramidal CA1","pyramidal SS","interneurons")
cond_geneset_res = calculate_conditional_geneset_enrichment(geneset,ctd,controlledAnnotLevel=1,controlledCTs,gwas_sumstats_path,analysis_name=analysis_name,genome_ref_path=genome_ref_path,specificity_species = "mouse")

Who do I talk to?

If you have any issues using the package then please get in touch with Nathan Skene (n.skene at imperial.ac.uk). Bug reports etc are all most welcome, we want the package to be easy to use for everyone!

Citation

If you use the software then please cite

Skene, et al. Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018.

The package utilises the MAGMA package developed in the Complex Trait Genetics lab at VU university (not us!) so please also cite their work:

de Leeuw, et al. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput Biol, 2015.

If you use the EWCE package as well then please cite

Skene, et al. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment. Front. Neurosci, 2016.

If you use the cortex/hippocampus single cell data associated with this package then please cite the following papers:

Zeisel, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 2015.

If you use the midbrain and hypothalamus single cell datasets associated with the 2018 paper then please cite the following papers:

La Manno, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell, 2016.

Romanov, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2016.