-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeafCounting.m
257 lines (209 loc) · 8.21 KB
/
LeafCounting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
%% Website
%https://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
%https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/
%https://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html
%https://www.mathworks.com/matlabcentral/fileexchange/25157-image-segmentation-tutorial
%
%% initialization
thresh_mask = 130; % threshold for generating the foreground mask
tolerance_mask = 20; % tolerance for threshold
black_checker = [49; 48; 51];
blue_checker = [34; 63; 147];
green_checker = [67; 149; 74];
red_checker = [180; 49; 57];
colors_checker = cat(2, black_checker, blue_checker, green_checker, red_checker);
OUTPUT = 1; % output flag for exporting result images and text file
%% read in image
img = imread('C:\Users\ycth8\Desktop\32_ecotype_Fall_2017_Round1_Rep1_CS76227_2017-11-17_10-51_top.jpg');
[rows, cols, ~] = size(img);
figure; imshow(img); title('Original Input Image');
img = double(img);
%% get sample color and correct the color of the image
[x, y] = ginput(4); % get graphical input from mouse click
x = round(x);
y = round(y);
black_corrupt = [img(y(1),x(1),1); img(y(1),x(1),2); img(y(1),x(1),3)];
blue_corrupt = [img(y(2),x(2),1); img(y(2),x(2),2); img(y(2),x(2),3)];
green_corrupt = [img(y(3),x(3),1); img(y(3),x(3),2); img(y(3),x(3),3)];
red_corrupt = [img(y(4),x(4),1); img(y(4),x(4),2); img(y(4),x(4),3)];
colors_corrupt = cat(2, black_corrupt, blue_corrupt, green_corrupt, red_corrupt);
pause(1);
correct_mat = colors_checker / colors_corrupt; % color correlation matrix
img_correct = zeros(size(img));
for i0 = 1:rows
for j0 = 1:cols
rgb_out = correct_mat * [img(i0,j0,1); img(i0,j0,2); img(i0,j0,3)];
img_correct(i0,j0,1) = rgb_out(1);
img_correct(i0,j0,2) = rgb_out(2);
img_correct(i0,j0,3) = rgb_out(3);
end
end
figure;
imshow(uint8(img_correct)); title('Color Corrected Image');
%% compute the normalized RGB image
img_r = img_correct(:,:,1); % red channel
img_g = img_correct(:,:,2); % green channel
img_b = img_correct(:,:,3); % blue channel
img_sum = img_r + img_g + img_b;
img_r_n = 255 * img_r ./ img_sum; % normalized red channel
img_g_n = 255 * img_g ./ img_sum; % normalized green channel
img_b_n = 255 * img_b ./ img_sum; % normalized blue channel
img_norm = zeros(size(img));
img_norm(:,:,1) = img_r_n;
img_norm(:,:,2) = img_g_n;
img_norm(:,:,3) = img_b_n;
figure;
imshow(uint8(img_norm)); title('Normalized RGB Image');
img_mask = img_g_n;
img_mask(abs(img_mask-thresh_mask)<tolerance_mask) = 1;
img_mask(img_mask~=1) = 0;
%% remove noise and other irrelavant green objects on the picture
se1 = strel('disk', 5);
img_mask = imopen(img_mask, se1); % remove salt-and-pepper noise
img_mask = imclose(img_mask, se1); % fill the holes in the mask
img_mask2 = bwpropfilt(logical(img_mask(50:300,:,:)),'Area',[0 12100]);
img_mask(50:300,:,:) = img_mask2;
img_mask3 = bwpropfilt(logical(img_mask(1150:end,:,:)),'Area',[0 12100]);
img_mask(1150:end,:,:) = img_mask3;
%% calculating leaf area
area_fg = sum(img_mask(:));
area_cm = area_fg / (78^2); %need to confirm this
%% generate foreground image using mask
img_r_fg = img(:,:,1);
img_g_fg = img(:,:,2);
img_b_fg = img(:,:,3);
img_r_fg(img_mask==0) = 0;
img_g_fg(img_mask==0) = 0;
img_b_fg(img_mask==0) = 0;
img_fg = zeros(size(img));
img_fg(:,:,1) = img_r_fg;
img_fg(:,:,2) = img_g_fg;
img_fg(:,:,3) = img_b_fg;
figure; imshow(uint8(img_fg)); title('Foreground Image');
bw_img_fg = rgb2gray(uint8(img_fg));
figure; imshow(bw_img_fg); title('Forground BW Image');
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(bw_img_fg), hy, 'replicate');
Ix = imfilter(double(bw_img_fg), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);
figure;imshow(gradmag,[]), title('Gradient magnitude (gradmag)');
%% leaves cutting
D = -bwdist(~bw_img_fg);
figure; imshow(D,[]);
mask = imextendedmin(D,2);
figure; imshowpair(img_mask,mask,'blend');
D2 = imimposemin(D,mask);
Ld2 = watershed(D2);
bw3 = img_mask;
bw3(Ld2 == 0) = 0;
figure; imshow(bw3);
if(area_fg<10000)
se = strel('disk', 5);
Ie1 = imopen(bw_img_fg, se);
figure; imshow(Ie1); title('Scope 5 pixels');
D1 = bwdist(Ie1);
DL1 = watershed(D1);
bgm1 = DL1 == 0;
figure;
imshow(bgm1), title('Watershed ridge lines (bgm1)');
bw3(bgm1~=0)=0;
figure; imshow(bw3);
elseif(area_fg<110000)
se = strel('disk', 10);
Ie1 = imerode(bw_img_fg, se);
figure; imshow(Ie1); title('Scope 10 pixels');
se = strel('disk', 20);
Ie2 = imerode(bw_img_fg, se);
figure; imshow(Ie2); title('Scope 20 pixels');
% se = strel('disk', 30);
% Ie3 = imerode(bw_img_fg, se);
% figure; imshow(Ie3); title('Scope 30 pixels');
D1 = bwdist(Ie1);
DL1 = watershed(D1);
bgm1 = DL1 == 0;
figure;
imshow(bgm1), title('Watershed ridge lines (bgm1)');
D2 = bwdist(Ie2);
DL2 = watershed(D2);
bgm2 = DL2 == 0;
figure;
imshow(bgm2), title('Watershed ridge lines (bgm2)');
% D3 = bwdist(Ie3);
% DL3 = watershed(D3);
% bgm3 = DL3 == 0;
% figure;
% imshow(bgm3), title('Watershed ridge lines (bgm3)');
bw3(bgm1~=0)=0;
bw3(bgm2~=0)=0;
% bw3(bgm3~=0)=0;
figure; imshow(bw3);
se = strel('disk', 10);
bw3 = imopen(bw3, se);
figure; imshow(bw3);
else
se = strel('disk', 10);
Ie1 = imerode(bw_img_fg, se);
figure; imshow(Ie1); title('Scope 10 pixels');
se = strel('disk', 20);
Ie2 = imerode(bw_img_fg, se);
figure; imshow(Ie2); title('Scope 20 pixels');
se = strel('disk', 30);
Ie3 = imerode(bw_img_fg, se);
figure; imshow(Ie3); title('Scope 30 pixels');
D1 = bwdist(Ie1);
DL1 = watershed(D1);
bgm1 = DL1 == 0;
figure;
imshow(bgm1), title('Watershed ridge lines (bgm1)');
D2 = bwdist(Ie2);
DL2 = watershed(D2);
bgm2 = DL2 == 0;
figure;
imshow(bgm2), title('Watershed ridge lines (bgm2)');
D3 = bwdist(Ie3);
DL3 = watershed(D3);
bgm3 = DL3 == 0;
figure;
imshow(bgm3), title('Watershed ridge lines (bgm3)');
bw3(bgm1~=0)=0;
bw3(bgm2~=0)=0;
bw3(bgm3~=0)=0;
figure; imshow(bw3);
se = strel('disk', 10);
bw3 = imopen(bw3, se);
figure; imshow(bw3);
end
%% leaves labelling and counting
labeledImage = bwlabel(bw3, 8);
figure;imshow(labeledImage, []);
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle');
figure;imshow(coloredLabels);
blobMeasurements = regionprops(labeledImage, bw_img_fg, 'all');
numberOfBlobs = size(blobMeasurements, 1);
textFontSize = 14; % Used to control size of "blob number" labels put atop the image.
labelShiftX = -7;
blobTotalArea=0;
blobECD = zeros(numberOfBlobs, 1);
fprintf(1,'Blob # Mean Intensity Area Perimeter Centroid Diameter\n');
% Loop over all blobs printing their measurements to the command window.
for k = 1 : numberOfBlobs % Loop through all blobs.
% Find the mean of each blob. (R2008a has a better way where you can pass the original image
% directly into regionprops. The way below works for all versions including earlier versions.)
thisBlobsPixels = blobMeasurements(k).PixelIdxList; % Get list of pixels in current blob.
meanGL = mean(bw_img_fg(thisBlobsPixels)); % Find mean intensity (in original image!)
meanGL2008a = blobMeasurements(k).MeanIntensity; % Mean again, but only for version >= R2008a
blobArea = blobMeasurements(k).Area; % Get area.
blobPerimeter = blobMeasurements(k).Perimeter; % Get perimeter.
blobCentroid = blobMeasurements(k).Centroid; % Get centroid one at a time
blobECD(k) = sqrt(4 * blobArea / pi); % Compute ECD - Equivalent Circular Diameter.
fprintf(1,'#%2d %17.1f %11.1f %8.1f %8.1f %8.1f % 8.1f\n', k, meanGL, blobArea, blobPerimeter, blobCentroid, blobECD(k));
% Put the "blob number" labels on the "boundaries" grayscale image.
text(blobCentroid(1) + labelShiftX, blobCentroid(2), num2str(k), 'FontSize', textFontSize, 'FontWeight', 'Bold');
fprintf('\n\nArea of leaves: %d\n\n' , blobArea);
end
%% display results
fprintf('\n\n');
disp(['Total leaf area is ', num2str(area_fg), ' in pixels.']);
disp(['Total leaf area is ', num2str(area_cm), ' in cm^2.']);
fprintf('\n\nNumber of leaves: %d\n\n' , numberOfBlobs);