diff --git a/python/instrumentation/openinference-instrumentation-haystack/pyproject.toml b/python/instrumentation/openinference-instrumentation-haystack/pyproject.toml index b45878a10..16f05ffb0 100644 --- a/python/instrumentation/openinference-instrumentation-haystack/pyproject.toml +++ b/python/instrumentation/openinference-instrumentation-haystack/pyproject.toml @@ -37,14 +37,13 @@ dependencies = [ [project.optional-dependencies] instruments = [ - "haystack-ai >= 2.0.0", + "haystack-ai >= 2.9.0", ] test = [ "haystack-ai==2.3.1", "cohere-haystack", "opentelemetry-sdk", "pytest-recording", - "respx", ] [project.urls] diff --git a/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/__init__.py b/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/__init__.py index 4fef51723..f2bec5f67 100644 --- a/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/__init__.py +++ b/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/__init__.py @@ -13,7 +13,7 @@ logger = logging.getLogger(__name__) -_instruments = ("haystack-ai >= 2.0.0",) +_instruments = ("haystack-ai >= 2.9.0",) class HaystackInstrumentor(BaseInstrumentor): # type: ignore[misc] diff --git a/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/_wrappers.py b/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/_wrappers.py index 358f4be21..f1939fce4 100644 --- a/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/_wrappers.py +++ b/python/instrumentation/openinference-instrumentation-haystack/src/openinference/instrumentation/haystack/_wrappers.py @@ -408,19 +408,14 @@ def _get_llm_output_message_attributes(response: Mapping[str, Any]) -> Iterator[ ): continue if finish_reason == "tool_calls": - try: - tool_calls = json.loads(reply.text) - except json.JSONDecodeError: - continue + tool_calls = reply.tool_calls for tool_call_index, tool_call in enumerate(tool_calls): - if (function_call := tool_call.get("function")) is None: - continue - if (tool_call_arguments_json := function_call.get("arguments")) is not None: + if (tool_call_arguments := tool_call.arguments) is not None: yield ( f"{LLM_OUTPUT_MESSAGES}.{reply_index}.{MESSAGE_TOOL_CALLS}.{tool_call_index}.{TOOL_CALL_FUNCTION_ARGUMENTS_JSON}", - tool_call_arguments_json, + safe_json_dumps(tool_call_arguments), ) - if (tool_name := function_call.get("name")) is not None: + if (tool_name := tool_call.tool_name) is not None: yield ( f"{LLM_OUTPUT_MESSAGES}.{reply_index}.{MESSAGE_TOOL_CALLS}.{tool_call_index}.{TOOL_CALL_FUNCTION_NAME}", tool_name, diff --git a/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/cassettes/test_instrumentor/test_openai_document_embedder_embedding_span_has_expected_attributes.yaml b/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/cassettes/test_instrumentor/test_openai_document_embedder_embedding_span_has_expected_attributes.yaml new file mode 100644 index 000000000..199dacdce --- /dev/null +++ b/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/cassettes/test_instrumentor/test_openai_document_embedder_embedding_span_has_expected_attributes.yaml @@ -0,0 +1,20 @@ +interactions: +- request: + body: '{"input":["Argentina won the World Cup in 2022.","France won the World + Cup in 2018."],"model":"text-embedding-3-small","encoding_format":"base64"}' + headers: {} + method: POST + uri: https://api.openai.com/v1/embeddings + response: + body: + string: "{\n \"object\": \"list\",\n \"data\": [\n {\n \"object\": + \"embedding\",\n \"index\": 0,\n \"embedding\": \"mQpwvbkUSb29omg8gN8tvKqRCb2qkYk8q1iZPCz7Hj1pf4S9CCIkvZeA2bzKmTU9O7vXPM2p2bwBBLg8rNx5O/MIYr3Pr4+7rFyivHBeyrw5ckM9vJ5fvEZpkLtuUi+9zalZPeslk7y9oui7RywXPFEX+Lzs7CI9FRtNPQOOTr06OdO80fr/vHTuFj0+hvA8PobwPOleg7xxIdG6OPC+uyakwrveLsY6blIvvSw69LsiEho81k+APHGfTL39shG9KrKKO0p5tDzbY608vePqu5LusLsTkTY9vWVvvOJCczw+hvA74boJPRpw/Dv1Ufa8tYIgO6S4KD1KujY9mpD9vLW/GbxLfT29BRTcu+1upz3gd9o8jx8PvIX3Y7zY1Q09DjwHPU3G0btvVji6ms+jPIf/dbziwhs9Pkn3PG4Vtjsq8V+977c7PdCzGL1xIVG8fM8JPZeEYry8IOQ8WTsavXUzIr3bYy078wjivCkuWTtLQMS8Wv6gPKHtjzyR6ic9z3BpPAYc7rxqxA+8zq3iuzhuujvfMs+862aVvDs9XLszWo07JuE7vD1DkrwNeQC9IMmFPCt5mrgH33Q8NiWmPPRN7bwZK/E8gN8tvc2pWb1/Xak8E5G2uxPSOD2618+8lHS+PPB6wrxOytq8zWhXOxoveryG+ZC7fhgeO4Lnv7v0zZW8OPA+vYLnv7sq84w94LaAPHGfzLxMA0s8mQydPDo5U7zf9VW84r6SvFxHtbtLfb06hXcMvTNajTy4zz06c6devRZg2Dx0r/C8YiLyPJV4xzwSTCu9LP36OSpzZDumAT06zebSvPWQnLwlX7e8WfoXvdByljygJoA8kamlu/00lry4DLc8B13wu7UAHD3tbic9yVizulGZ/LwAAC+8W4QuvSt1kbwabqC8ulVLPbmSRL10K5A8uE05PXwQjLvYV5I8DjyHPCGMDLw3arE8lHQ+vGIgFr0Xo4c8z7Hru5kMnTty5gQ9l8FbPAXX4rvKmTW9l4IGO01IVryIwny85Id+PYCiNDy6GNK8NmaovKvYcDvq5JA6SfevPKuXbjw3ajG8j94MvH7XG7wpb1u8PUMSPbL0AD2F9+O8D4ESu7T8EjxgGmA8oCaAPQGGvLw9w+k88whiuyBHgT3vOcA89IyTvGk+Aj2BJDm7JqRCvUhxIrzziIq8qY2Au5eE4ry83YU77a8pvBORNrxZ+he7//slPNiUCzzdaz+9YNldvMUDBD3g9wK9zy/nvAii+7u2BKW7uZLEvCGMjLxyo9W8pT42vJFoI70U1kE9oCaAO9lbGz1iYRi9X9XUPFBU8Txgmog9poNBPEl1q7u4DDe9vumgPKEuEj0XYoU8Xg7FvNBylrjPrw+9b9i8vPQOmLzI0iW9a0YUOg66gr0p7da88sUDPW8ZPzxL/8E8veEOPSXdsjzQNR28qtTnPJY/Vz06+NA8mo4hPLP4CTwBhrw8kCMYPYiBejyEMoE7zKHHuriOOz2RaCO9FdrKPEuBRr2EMgG7KvXovFFYerusG6A7veNqPP/7pTwtf389N+y1vM3m0rxL/0E91k+AvLzf4TsDDEo93e3Du4RzA70Szi89s7eHPYHjNr0HIPc8rFwiPdvhqLzsap48YdsKvadGSD2nBUY9BpwWPCNXpbzX0YS8lwLevIa66rx0Lxm9NuSjPCaguby0fpe8toapPCFLCr2qUuM8o/UhPNB0cjreb8g7yx/DPPG/Tb1G65Q8fFGOPfC7xDyHPhy96iGKvIY6kzwDTUw9s3oOPd1rPzyz+Im87a+pPNukrzxgmNs8W4QuO/yuCD3drME8rFp1PICeK7wEUwK9xQcNPTp2zDxJdSs8OK+8vM5s4Lyj9SG89A6YvWNloTwRyiY8bEodvVAT77wV2so82t2fPGEcDb0zGYu8ojKbvP+6I70ikJU7OPA+PcbKE708P4k8pLgove41N7ziQnM937RTvaqRCb3Z2Za8ms12vP88qDm7nIO88oSBuZT2Qr3w/Ma71xKHO7ucA71yJdo7OPC+OjMZizxJdSu9yx9DPL6oHjw8QeW83Ws/vDt8AjyS7jC9YmEYvRADFzyYx5E8zOJJPLtZ1DvQ8m27JBqsPF/V1LyZjPS8X1PQvDTcEb2OXIi8B990uhadUbxPjw68GansPMWFCLrxgtQ8pwVGvJjFZDstPv28szmMvBVYRrxhHum7zGROvUfvnboX4ty7D/8NPBXayryAYTI9uAw3PeL/lD3hPmo8xguWOxov+jwa7nc7lblJPZkK8Dy729i8OjXKPHDcRb1YdIq9hbQFPJT2wjxbQ6y7T9CQPL1jEzxy5gS9D8IUPLeKMryRqSW7y95APf73HLwgiAM97a+pvKmNADyEMgG94r6SPBil4zxKPLu7JJgnPf62mjzvOUA8YZzkvKKwljzwekI7XAYzPe+3u7yFdww9OXJDPU0JAT31EiG9GGjqvHWz+TtLQEQ9u1lUu5X6Szy83QU9E9K4vDt8Ar1OzIe8MhWCPbeKsjx8z4k9YJjbPGHbirug6QY91k+AvGFbYr2+pnG9NNwRPFh4Ezx1MyI9W0MsvbzfYb3QM3C9cuaEu5a90rxiIvK83OWxPCisVLw+CPU89AzrOyDJhbsBBLg88sUDvdvhqLxgmgi9mEfpuTTckbz76wG9BJJXO82p2Tx7DAM9dGySPT6GcL3iwG69LP36vBrud70oa9K87TGuPD0CED3zSWQ7jlyIOhFIorvucrC5pf0zPUcwIDy7WdQ7oGeCPPYU/bpiX+u7lj9XvDq3TjuXw4i7x86cvCcmx7uaTR+9rB38PD5Hm7skGiy8OPC+PJFoI70rthO8hbZhvJb+VDq+KPa7qpPlPOJC87zdaz88AknDOWCYW7xODQq9EAMXvQaclry+5/M788mMvOK+Ejwn5cQ8/DCNu2Kg7boSCyk8NF4WvPIE2bv1Txo8yNIlvagJTzs+Sfc6OC24vN3pujyrl+47vWXvO7fLNL2sWnW8YZxkPMqZNT3Y1Q08EQcgvESiAD2pUIe8t8u0vGIglru2BKU7hTaKPM3mUjugqIQ7YiJyPMYLljz+tpq722OtvBfi3LzdrEG8tD0VvV5PxzwY6BI9Yt8TPRXaSrv0DOu8J+VEPTcprzjzCGI8iAN/PI4bhjw2p6o7RzAgPJkMnbzjRCA9AorFPAaYjbw6+FA9gSQ5PckXMb0F1Ya8RigOvMgTKDw8gIs8lDO8O0q6trzJWLO8kisqvKP1oTxpf4Q7rB38PKbAOr1wHUg8c2gJO0l1K70nZ0k8tUEeOyx7drwSTKs87nKwOyeoy7y6lk08Jd2yu7O3Bz0q8wy7oGeCPdsiq7uaT3s8FmBYPOF747wlXze94LjcvAKKxbzif+y8pDqtO99zUT0X4tw8XIi3O9qgJrw9RW67svSAvEg0KbxrBRI9XxZXvD3D6bzfc9G6M5eGPKsV6jyUN8W7b9g8PNhXkrusWnW9Y+Ocu4Ceq7worNS8vN/hu7vbWL2r2PC8TMLIvALHPrwXYoU89A4Yvf88qDvivhK7PEHlPF3NwjskGqy88YJUu7yeX70iTxO9I1clO/vrgTxI8yY9pHcmvT6K+Tzd7UO84wX6vDMZizsSTKu8orAWPQKKxbzR+KO8bxk/PdA1HbxNSNa80fr/PIX34zz0S5E8XAYzvU6NYTzFhQg99lV/POxqHj2hLpI8Ic2OPKHtjzwZbPO8zSdVvCnvAz3JVCq8E9I4PeJC87oproG8mMcRu71jk7u1AJy8UFTxu4Z56Dykey+8PsfyuY9gkbxXsQM87nKwvJkIFDzJWLM8guc/Pb4mGr1OzmM62NUNPOxqnjuEMNQ8gGEyOfG/TbySra483Kg4POtmFTs+ink8uE25vPzvCj0svPi83So9O22PqLwGWWe6T9AQvSQaLLxKeTQ9zq3ivE4LXTwar6I8UVh6OZQzvLykOi29g65PvXzPCT08ft47f9skO7hNOTzR+v887rOyvF/V1DqO2gM9fE2FvMnWrrzjBXo8AknDupb+1LxqxA+9TkxfPPyuCD0STKs8J+XEPJvR/7xagCU9h//1u9E3ebwOfYm88D3JPNhXkjzh+ws8y97AvNG3obyVuck8vudzvGCaCLw5csM7dfByOvGC1Dv0DOs76yUTPSeoSzmSbCw8c+oNPTn0xzxOC927XpBJu/NHiLuGeei5PP6GvGvIGLtzKWO8GCWMvIFlu7uRJyE94wV6PYIoQj3tMS68hPNavdG5fbuGOpM9g65PvUr7OL3hfRC9RiiOu11LvruVuUk8bRGtO5BkGr08Pwm9NuSjvL/rfD0FluA7pDotPChrUjw03BG88obdPA//DTwHXx08kmwsPP+6I70giIM7W8GnOod9cbyXhOI8gSS5PIV3DD3sqyC9z/ARPV8W17vHDx89gyxLvNyoOLziQBe8vF8KvHVyd7zsq6A8yhu6O0zCyDraoKa7iAEjPE5KgzyYho+8SPMmPDx+3rzqIYq84v8UPQee8jpsi588KjLiu+E64TzL3kC9JNmpvH5ZIDy1gqC8xUSGO2BXWTzNqVk6gijCPDwA4ztP0uw637RTPFh4Ez0+yR88UZl8vJqOoTsEklc8b9i8vOLAbjyH/3U8Gq+iPDjwPrxiIBY82yKrvIV3jDhZuRW8PkebvBho6jz2FP07l0GEPCKQlbuIwvy8aoONOzUhHT1Jti29PQRsuseNmjk2Zqg83rDKPKsV6jwpMAa8yRcxOzivvDp/miI9A01MvAXVBjw/DP68FmDYPD4GGT0qMmK8hfdjvacFRruFdd+6AL8sPQFFurx0K5C7bU6muzReljvdKr289EuRvNtjLbyDLEs9JqA5PfZV/7w+ink8S0DEPL/r/DuCacQ6LLqcPK1efryGumo7hbZhvE8Rk7yFNoq6Tkzfuzcpr7xOC928kaklvEtAxLsgR4G8F6FaPW9aQTz+tpq84T7quw6+i7x18PK8/zyoPEl1qzthnhE8JqA5O78qo7y7W4G740b8O3BeSrvI0qW8tgSlOxILqTsqtOY7zivevOF9EL0Cx748dK0UvGEeaTy2him7PH5evBfgAL2yNYM9LLx4PAQQ07u7HNu8lr3SPN7xTDzHD587dXL3O/RLkTzvt7u7xQOEvCgq0Lxi3xM9Wr0evSYivjtvGT+9AL8sPbvb2DsGWWe8UFaeOs1o1zy7HFu8B13wvKZCv7vg9wI8MlaEvABBMb0Qxp28XxbXPD1DEj3+dRg8Gi0euqmNADyjtB+97OyivDu7Vzvt8Ks6c+qNPBPSODwYpxC9E9I4PGOkdrwpb1u82+EovM/wkTwp7VY7GSvxu8WFiLxqxA87ojKbPGEe6by2x6s8zanZPPB6wrzY1Y27BRRcPV4ORT2OG4a6vih2PGCY2zsXoVo8X1PQvD7H8rrjRnw6F+CAPKlQhz0CisW7ReeLvHStFLwT0rg8m9H/vD1DkrtiIvI8Ik+TN83mUrzbpK+6Jd2yPE/QEDykOq28b9i8vKR7r7yXgoY7XAazO+SH/jyH/3U94DbYvIdAeLwtf/87FlxPPIa4jjslXze8iAN/PN8yT707/Nm8BttrPM7siLzu9LQ8K3WROskXsbtiInI6J+VEvMyhR71sSh28lLVAOwWUhDyrF5c7mQgUvfSOb7y83YU8STgyvAMMSr2qUuO8Gi2evNE3+buGeeg88PzGPMrat7wU1kG8p0ZIvWCYWzxuk7G7E9I4OnSv8DxPUGg9qxXqvJPyOTyS7jA9MlYEPPYU/bxjpHY7bIufPAAAL7xzp96626QvvM9uDT0HoJ+8qpGJPAC/rDwHHhs8q1bsO7ZFp7yH/3W7LLz4O0euG7vvtzu8hHHWPNwmtDwPQJC8ftcbvKgJz7vOK968Tg2KvNqgpry6ls06KS5Zvb+qerwBRTq8u9vYPLeKsruBJLm8RSQFvCSYp7wSTKs7KGvSO6vYcDw5s0U6BBDTur+q+rtZ+hc8BZbgPLfLtDzIEyi873a5OuMDHr3KmbU8JZwwvXWz+bvKXLw7z24NPKvYcDo2p6q88kVbObO3Bz19kpA8J+VEPfXP8TxjZaG8/TQWO9jVjTzyRVu8YuHvuweecj3yxYO8UFYePZrPIzu+53O7Fp3RPLaGKb2SK6q6lHQ+PSQaLL1h3eY7veWXPNukrzwZK3G8B6CfvNAzcDtPD2a8LLqcPGHdZruZye0880nkvO41t7xrhxa7J2fJPF6QyTu4jrs72+EoPE2J2LyTLzM9qAnPvGHd5rsjUxy8zebSOjgtuDzd6Tq8jtoDPerkkLlypQI9t8u0vCHNjjsBRbq7FdpKuwLLRzs7fAK9J+XEPKuXbrzwPcm8UNSZvb7poDyXgoa8WDeRurYEJT17DAO8lj9XPLdJsLxMhc88PcWWvL/rfLuj9SE9qMhMuzfsNTxIsiQ7Tg0KPaeHSrvgOAW9qhFhvDp2zDttTqa87OyivN9zUb1y5gS7mASLvOwpnDkFVd67BRYJPIQygbwqsgo9qhFhvXY1fjvQ8m09cNxFvdyouLss/Xq7Tg0KvEVlhztOC129PH7ePJkIFLyYhg+8l4IGvRWZyDwF1+I7sjWDO8tgRbwVmUg8FVhGPNgWkLxhXY87djV+vLxdXT1qAYm8jhsGPAZZ57vaoCY9qY2APGvImDs4r7w7OPA+vHNqZbz+OB89mcntPCflxDyAorQ8SPMmvUn3L7oFlmA8x0yYvKsV6rtRl6C8ExO7O72kFT2nBcY89lV/uT2EFDylfzg6YiLyPBPSOLy9omg8zGROvL3hDryha4u8I1elO2FdD7yAorQ60PSaPOqjjryy9AA7lr3SvE4NirtOSgM9yBOoOhehWj0q8wy984pmPEdtmbxqAYm8F6Fau06NYb0G22s8NSEdvLO3hzxJti08Y+McPEo8Oz2r2PA8jp2KPFvBJzyCaUQ7PH5evWJjdDzwPUm9URd4PO85QD0Cy8e80LX0OyEOkbxOiwW8vN2FPCz7nrxbhK68/zwoPXAdSL30SxG8OC04PSr16DxOSgM8WfqXuahK0breb8g8vB6IPDers7x7DIO8JR41u8veQDsmoDk7GOZlOzanqjw9gmc7ydYuvWOmo7zxAFC88gRZvKjITDnOqwa9hvvsvAYcbruoi1O4x84cPdAzcLus2h099RIhvIQyATsAv6y8Fh9WvAKKxTyhKom8FyPfPIc87zsWH1Y7tYKgO0fvnbymAT07xYWIu1HYIj398xO9gSS5vHQrEDz8rgg9ku6wOwWW4LyFd4y8GOgSvTkxwbslnLC8YJhbvO6zMjuoyMy8bMyhPIAgsDvyhl286Z8FPXQrELrjhaI8OK88vb7ncztzKeO8hHHWvGAaYLtFZYe87OyiPGBZhrukOi27cWJTvCt3bTy9JG07lj/XPE/S7DoWXE+8W8EnPTq3TrrbY607BhxuvEn3r7yh7Y+8BBIAPT7JHz0DTcy8lTtOPZgEi7zd7cO7yx/DPEl1K7uSbCw9hbZhOyRbLjySKyo8KGvSO7nTRjz8roi7o3MdPbgMN7zQ9va8Bx4bvD2C57zQ9Bq9PMENPQegHz08QeW515CCPFEX+Dm942o78YLUvNG5fbuVeMc76R0BOiu4b70I4SE8OXLDu4JpxLsCikW8bREtPRhmDr1g14G8kGSaPM9w6Tzziua8oS6SO3PqDbwCCEG7gN+tPBgnaLvt8Ks89M2VvHOn3rxjpHY8g67PO8vewDt0KxA9veUXPSHNjrzjAx68mIhrPBjm5bxPTgw7h0B4OzcpLzwSD7K85If+vG8Zv7zucjA7tgQlvLqWTbtK+7i8g65PvTViHztxIdG822Mtvc5s4DxFZQc8fhiePHRsEj31EPQ7AknDvKR7rzxJdas8z6+PPPvrATzuNbc84n9svJvR/zzc5bE8FJW/PEYoDjtYtYw8qY0APZjFZLwkWy67fVWXuqfEwztjJns8mMVkPc9w6bw7etW8y95Au8qZtTxciDe9vJ5fvfOKZjyHvBe9mAZnPL5nnDzf9dW8OvhQOzUhHb0rOJi8dfKfvG9WuLwTE7s8JBqsO1+UUrxPUGg8X1PQvHY1/jtgmFs9dC1sPd8yz7zif2y8tQAcvXMnB7037DU9BVVevZIrKr3+tpq8f12pO4HjNjoz2Ig8gGGyPCqyijukOi09\"\n + \ },\n {\n \"object\": \"embedding\",\n \"index\": 1,\n \"embedding\": + \"74UuvS3Smbvura42/CUqvFaKjLuMBc+6QxXnPD2qlD2bBUq9DeX4vMkFuzxt4oS81s02vTU+lzwZdqC7QmVnPcMNPb0V3qE8A/anPIVd0bzUbTc9XqYJvLw9vzxTeg29CBYmPUOOkjxCZWe997WrPJsFSr3+vH09MQXtPHGOg7xq5oW8cXqDvH6NUz3+Xam8BH6nu/P1rDx0dgI9zZ05PBFGo7xZmos8/zUpvU8FY7wq6pq8O14VPSxyGr0zZey8PCIVOz2+lDxksgc9S21kPMSVvLxwygM9IH3yvIGd0jyMBU89j+1NPB+CHjyyrcK8N56WPCWinDxG2hE9n8VIvSrqGr1r9Vm8bH3ZvFC14jw4rWo9X93dPGVihzz0pSw8px3GPJpVyrsonps8fd1TPDwiFTy5LUA9mPVKvVQ+Db0PRXi9FWX2PDwilbw0jpc834Uzu1WyDL35nH87YBoJPBd19bxEnWY8D74jPG9CBD0ARX07AL6oPAFuqDw3shY8XQqKPGylWbwuvhm98ZWtuy36GT1NzWO83MW0ubM1QjwfHfM8+RUrOwfFerwjah29cAYEvDJqmLxk2ge9BS6nuk5947z7/P47j+3NuxjGILw56pW8JiocPEkN5TzP1Ti9gZ3SPKcdRjwchh+9VnYMvAUGJzzBrT09aTaGPC9umbwzZWy8kXVNvXR2Aj1H1eU8LDYavYJ10jxnrgY9420yvW26BLtTjo08jbXOvBhN9TzgXTO83iW0vNjdtTyAFdM8fAqAvFQWDbwfqh69EUYjPUmakDxUPo28BbX7vDxFabzcxbQ6U2aNvBJV9zvA1b281R03u5DFzTyzDUI8QbVnPG5qBL239UA9g/3RvGJmCD0A5ig9dYVWu/ANLrxpDgY8bB4FOwUup7zS5bc8652vuXqqAD1OMo88ZhKHPU8tYz3lpbE8KhKbPGmVWjwYxqA7PaqUvM2duTo3npY7sq1CPVQqjTtEZpI8cGXYPIMlUrsFLqe8PwqUPPjE/7sSziK9BFYnPTkmlryeFUm9B8X6vEbaET2h/Uc9yFU7PGSyB7zDDb288b2tO7Tlwb3P/Ti8mPXKPLuNvzoeRXO8OtYVuy4dbjw75em8cPIDPXwKALxxjgM90K24vHlt1Twb6p+8g/1RuzxF6bqVDcw8VCoNvUPeEj0YTfU71R03PXltVbznLbE6Y3XcvCoSGzwMrqS7x6U7PNINOLxrlgW9cLYDOlxairyozcW8mn3KvCjGG73yRS28MwaYPOZ9Mb1jddy6LeYZvUV1ZjtDohI9Uj3iunt91LyQnU298A0uPYMl0jwccp+8V/6LvCr+mj0DLfy8akVavGKOCLxC8hI8XG4KPXwt1LzcxbS8wP09vT3SFDwfHfO8QVaTu2J6CL0qEpu8L1qZPAqepbvpZbC8CU36PM2duTvcnbS7qKXFPFzNXrwytWw93iW0u2lt2rtf3V08GXaguUR6EjxlYge8YLXdvFnl3zxT7eG8xJW8ugbeJr3frTM8An38vPTNrDwvze08KuoaPXn6gDwXPiE8I1adPBU99rwLTiU9P33ovB5F87y6BUA8UJIOPe0lrzo+zei6dToCPWYSB71E7WY8rGVEPacdxrxx7dc7OtaVPEF+kzxRLo49V63gOotVT71abd86VbKMvHbWAb3cnTS9FbYhPWvNWTxJDWU7rGVEPPqdqrvcnbQ8QVYTPWMqCL0IFqa7B8X6PCB98jtTjg28dHYCPfJFrbvV9ba7tL3BvO39Lj1cggo9OE6WO48VTrx1OgK97q0uPT6ClDwxphg9V4VgOwnupTx21gE9J01wvEetZbzk9TG9wl29PFaKDDxDPWc8is1PvblVQL0gWh69Y53cvEV1Zjzx5a07h5XQvDGSGL10ngI9K+VuPWWeB70KnqW7r3VDvRd19by1lcG8DP6kPGM+iL3eJbQ8Kw1vvFr6ijz0pSw9KtaavLilwLzKjbo81G23vAeOJr1uBVm82N21uyvCGjzXLbY7TKoPPGatW73EbTw8AOaoPE4yDz1LlWS9edKAu3SeAj0t0pm83iU0vZRdzDxsHoW78DUuvZ49STsy3Ww8ZjqHvIqlzzt7pVQ839Wzu3gigbwjQh29/TT+vJFNTbqeFUm8C04lva7FQ7zurS48RMXmPBCWoztkJVy8auYFvQJGKL0UVqI6BS6nvFIVYrwIPia9cwKDvXEV2Dwt0pk7chaDvD8elLwodhs9QbXnPGuqBT3OTTk8nj3JPEPeEj2RTc08bS3Zu6l9xbwdXh89sCXDPCyVbr1yKoO905W3uSnVb71sCoU8WOqLvA++ozl6HdW8AOaoPJdtS73Evbw8zBU6O1/dXbytFUS8dIoCvWlKBr24fUC9auYFO3GiAz1MReS8KHabOhwN9Lxixdy88x0tvSiKG73eJbQ85c0xPDUqFz0b6h89mB3LuxSNdj2jXUc8MAoZPNmNtbpnNVs8pb3GPCmtbzxB3Wc8UQYOvBS19rwb/h+9ZjqHPSHinbtb0go95wUxPe+FLrxl1Vu8/oUpPXlt1bw5Xeq8zBW6vE31Yz1Mqg88FFaivdFdOL155oC8wl29O+ctsTz7TSq9/Fz+vE3N4zsHxfo7NnXrPONFMruo9UU8DQ35vLoFwDt+jdM6CBamu3SeAr1pvVq9VbKMPDG6GD0z3pc8QvISPZa9SzzSDTi9EX33NV9WCb3eJbS8Tn1jPb3tvrvURbc8uVVAvFBCDjwJxqW8dRICOw0NeTx0soK6Y1IIuvMdLTxffgk9ppVGvKZtxjtgZd08b1YEvWAGiTxgtV07Zk6HPN79M706mpU89X0sO3wt1Lx1rda5/uT9u0xFZLxFTWa67SUvPVQWjTv8/Sk9iG3QPGhehjwyQhi8Jp3wuxZmIb3Brb08N54WvG8uBLyeFUm8epYAvV5V3rt35dU7OtaVvEAt6Lwy3ew6UqKNPD4ylLtdCoo7sq3CO17iiTybBUo9I7XxPLYdwbl8VdQ8a81ZPE1GjzwmZpw7OSaWvHbqgTzq7a+7F8X1PF7OiTzx5a08jj3OvAC+KDvMFTq8csXXPDJqGD3JBTs9X2qJPF66CTz33au7Dx34vIn1TzokZfE84r2yPOvFrzyZpcq8QC1oPJOtTL1eVV49KYVvPFGNYjxHipG6DF35PEAtaDwhCp48YwIIvGrmhbw75ek8+9T+PPTNrDrlpTG8J3VwvcPlPDwgRh49SQ3lPKoFRb0RHiM8pm1GvDwOFTxLlWS8V/6LvJL9TLwPvqM8N4oWPN79M72pVcU8hTXRPFcSDD1+jdM7ZzXbu1r6CrzwDa47ziW5PLf1wDxcloo8Qo3nPB+CnjtAzhO8qKVFPGaFW71EPpK8WV6LvF72iTs6rpW8kiVNOzYWFz0ifh28lpVLvBqt9Dzx5a08JsXwO0R6kjkJTXo9LdIZPKW9xjtEPpK8Q6KSPBBuIz1aNou6+XR/PCw2mrwwChm8gcVSO6W9Rrwz3pc8AfX8PE1aj71dpV48O5XpvFDdYrxY6gs9jmXOu5IlTTstDho8R3YRuwC+qDzWzTY8YqIIPFyWCr21bUG9XG4KvQidej0rrho9F8X1vAz+pDxWYow8+I0ru3Y11rt1EgK9+GUrPb8lvrxJrhC9Dr14PT7N6Dv1Vay8RD4SPSfuGz07ShW9bH1ZvWVih7xKveS7maXKPGeuBj3jbTK8M2XsO+cFMT3IVbu8dHYCPVUl4TwYxiC9VJ1hvUkN5bsvMpm8P/aTvBcWobz7dao6PZYUPHEV2LvYBTa9H/XyvCJ+Hb1KSpA8BrYmPCo1b7unRca8sCVDPfwlKjtffgm9R4oRu7KFwrvQrTg8Djakuypd7zuyrcI89VWsPHeaATxdCoo8XM1evFb94DqGDVG9P1XoO2x9WbpIhWW8eUVVvLrdv7xRLo49O14VvbHVwjvG9Ts7OtaVO/6FqTyjXce8F511vFHyDT1sWoU8FT32PDo16rvdTbS8I7VxvDGSGDqyhUI7GCV1u421zrxzAgO8wa09PGEVXTx0ioK87E0vvZblSzwaJiA9/Fx+PAqeJb2Njc47Z8KGPM/9OLwVBiK9GE11vOKVMrwN5fi8Ut6NOnbWAb3Brb08soVCO60VRLzlpbG8rsXDO1xuCr0PvqM6CnYlPVCSDr1Ngo88Q8qSuxaOobvybS29cXqDPHul1LzcxbQ6dIqCvB7mnrzWzba8TKoPvWrShTxi7Vy8Gk4gPU8t4zz33Su8bgVZPHU6grwkPfE8xG08vReddb0gMp68zBW6vDqGFTz8hP67GCX1PAr9+TtH1WU3KTqbvGaF27olthw9ab3aOymt7zvz9Sw8Px6UPE+6jrzKtbo8zO25u1aKDDv4jSs7cY4DPFWyDL0SVXc8CD6mPC9aGT347H+7YC6JPF0Kirskypy8FmYhO2x9WbzzHS28E912O4ht0Lo85pS8e31UvHnSADwObfi8u7W/vDh2ljyfnUi7Xs6JvPvUfrufncg6bc6EvJDFTbz7/H48Gf10uiliG7zJ3bq88kWtvKjNxTz5dP+8Y51cPYVd0TtIhWU9GzX0PETFZjzbFbW8j+3NO609xDydZcm8jxVOPD/2E71CjWe9YGVdvIht0DtvGgQ8FbahPEyWj7wuvpk8CBYmvd+Fs7wt+hk8j+3Nu9/VMzxukgS8ZO6HvP00fjsiuh27N4qWPKW9Rjxlngc8LJVuPP6FqbhKchC8aJqGPEkNZTxvLgS911W2u3bCATwLJqW3X5IJvW8uBD0P5qO7W6oKPectsbu7tT+9BQanvMndOrxKhhA9YcqIPEzSj7xgLom8Lr6ZvIMlUjz6xSq97SUvPCIFcryopcU7th3BPNydNLwVtqE98b0tPPvU/jojLp08NMoXvF5V3jwLTqW8ER4jPVuqijzXVTa8LCIave9dLr3OJbk5x6U7PHMl17xSFWK8NyXrPNX1tjwxkhi8e31UvL9NvrwFZfu7F531PFc6DDwf9XI7DNakvEF+kzsQ9fe8cyVXPL8lvju0vUE8LUXuuyuamrwyjew7cD3YPEbaEboK1Xk86N2wOwyuJLcDzqc8L6VtvHGOg7seRXM9z/24u2dd27xKhpA7BS6nPLJdwrtPLeM8T+IOu0makLsvze07MQXtO1uqirx7fdQ7T7qOOgTd+7xEnWa9W9IKPSHOHbw0ohe8LEoavDNl7Dxlnge7eb4APD0dabzMFTo8d66BvMS9vLw6mpW4J3VwvAlN+jxFFhI9cN4DutCFuDs1Kpe8lF1MvPG9LT3P1bi8HZVzvQTd+zusZcS8ScKQPGdd2zy/Tb68pDVHvKxlRLxt9oS7bAoFPe9drrxx7Vc8L0aZu39l0zxmToc8R9VlO+rtL706hhU7YmYIPc11OTwrmpq8ce1XusndujsD9ic8wP29vLrdPzy8Pb+6R2KRPAnGJT2rtUS9NyXrvFZ2jDwNXiS7FFaivDB9bTwA5qi7eb6AvDAembtbqoq8BQYnvMgtOz1n6ga9TqXjvF9+CTxXheC7HOVzPP2tKT3YBbY8hNXROiWOHL0aTqA7uH3APDTta7tgGgm7+00qPMbNu7wXPqG8OeqVvBCWozs61hU92AU2vKlVRTxB3Wc8XX3evF5VXr2bBco7R04RuXZdVrtn6oa8Sl6QvFb9YLw7NhW7CSX6u8PlPL0jGh29HSKfvAMt/DxwPVi7cGXYOxFGI7wrmhq8Yz6IvD3SFLzsTa+8MOKYPCKSHT04OhY9mPXKPG3iBL0QlqM9D0X4PPz9Kb1hPd072Y21PHpugLw3Jes8/w2pvBYV9jy4fUA64DWzu9RttzyN3U67PaqUPNzFtLwkPXE6IVXyPBJV9ztLIpA8cnXXPGQl3Lv5FSu9Zk6HPD2+FDwodhu9bFqFvKW9Rr0Cffw8x327vE4yj7wWFfa5r53DPGyl2bwn2ps6ZhKHvG32hLsDzie7ve2+PCXtcDzD5bw7i1VPvLWVQTy0vUG8n53IPFiuizxomga9O14VPPV9LLxdMgq72bW1PNRFNzywTcO8/oUpObtlP7x5bVW8ppXGukc6kTyx/cI8hIVRPT2+FD0ccp+7HSIfPXT91jxQfg69rRVEPO+FLj0r5e68OV1qPYrNz7tabV+7by6EOtRtN72OPc47mc1KPWm9WjvD5bw8+Oz/PF0eCj0zPWy7ZZ6HPPtNqjtqRdq7otXHu8PlvLykDcc8Dg4kvUc6kbx2woE6HUofPSK6HT1Zhgu7yd06O0G15zwNhqQ8S/oPvZOtTLwCfXy7wa29vHSKgrwSziI95wUxPbH9Qjyl5cY8Uj3iu3SeAj0GtqY6RrKRvDS2Fz14SgG9KtaaPG3ihDr1fSy98m0tvWx92TxuBdm8xL28u3g2AT1WYgy6YGXdO8b1O7xgtV09RzoRPN+ts7tHThE9epaAvEuV5DzBhb28NT4XuxwNdLxRLg6974WuvNOVN7xxeoO7PR3pvPP1rLxjnVy7VmKMPIwtT7x3hoE8JMocPYSt0byN3c671s02vJDFzbzKtTo9710uvV2lXjw22ha7O16VvM/9uDxNbo+9J01wvBFGI7xVJeE8V4XguzEFbTxcbgo9LqqZvJ/tSL056hU6wNU9PfP1rLwEVqe8chYDvE1uDz1w8oO8YxYIvBed9bxJNWU9YsVcPGKOiDvTvTe8FbahvKdFRr0ljhw9DP4kvPYtLLxqHVo8SIVlvMMNPbxALei8vnU+vectsbs/Veg7o4VHvXseAD2P7c08EUajvDMGmDw99Wg9XJYKPQqepTx5+oC8+Zz/PGTuB7tczV48e81UPLM1QrxZhgu9BFanvFDdYjz0pSw8IB6eO1cSjLsh9h08Zf1bPLS9QT3vXa68HkXzPHiV1TteLV680V24PHY1Vrw1nes8DDV5vEmuELxSog07CD6mPIrNzzwBbig8gyXSO172iTqePUm6SF3lvO39LrwahfS8NWYXPSQGnTwG3iY9O0qVPCnVbzw3JWu8vcW+uEgmkTtPLeO7Fz4hPSglcL30pay7Ay38PPhlq7sUjXa8ElX3O449zjxpIga8vp2+vO7Vrrtldge9EPV3PEG1Z7zpZTC9VU3huWBl3bsGPXu8VyaMvCKSnbxS3o28X34JvZpVyrxSto28Zk4HvWlKBj13hgG9tW3BPKotxTwVBiI8sdXCO0PKEj0eDp87dsKBvH610zw+bhS9NKIXPWM+iDzKtTq8px3GPLM1wruo9cW6+iT/vAUuJz1plVq8Kw3vuk8FY7zhDTM8zZ25vHUmAr3q7a+8F3V1vIwFT7ynHUa8eeYAPE/ijrxUKg28X2oJvHqCADwK/Xk6WA3gPI5lTrwA5ig9A84nvXA9WDyIbVC8M2XsvGiahjwslW48ULViPFCSDrwoJfA8EPV3vcndujx8LVS9MaaYPNFdOLoY7iA8Ay18PBgldTzGzTs8WZqLvP81Kb2Xbcs89i0sPDTKl7wIPia9EJYjPVyWiry0vcG8YGXdOxjuoDwS9qI8qKXFvGMqCLsulpm8o13HvF/d3bxG2pG82Y21PHNNV7y6BcC3O3IVPQ4OJL1c9V67dw1WPQMtfD0w4hg8PA4VPQIeqDpfagm9zZ05vXbCgbxDFee8aA1bPHLFV7xkTdw7rT3EPMkFu7s8DhW87f0uPXlF1bwQlqO8jmVOvT8eFD1BVhM6yz06PA42pDw2deu8aW1au4tVz7lW1eA6kv1MPF72CbwFtXs8t/XAOwOmJ7w9qpQ8+3WqPIwFTzoAHX08CyalOiAeHro+bhS9422yPATde7xzAgO9pb3GvAyupDw+pWi8sCVDPC9uGTuUXUw8JmYcvSO1cbzJBTu8UQYOvT2+FD0sSpq6/zUpvE2CjzwCHig87HUvvV66Cb3gNbO8XFoKvUAtaDvSDbg8gyVSPGC13TmzNcI8Tn3jO8s9ujxALeg7SIVlPB5F87yOZU68SP4QPHeuAT3ILTs6QbVnPfe1Kz36nSq9P1VoPFPF4TxDthK9AZYovRW2oTutFUS9LpYZPcMNvTwaJqA8Fz4hO9dVNrxLbWS8eqqAvIU10bqjhce7650vvPjs/zsmUpw8YnqIvC+lbTvFHbw85wUxPQz+pDv7/H48YAYJvVb94Lui1cc7xvW7uz9V6Lx1hdY7nhVJvHcNVrxPLeM80IU4vXKd1zxO9g49\"\n + \ }\n ],\n \"model\": \"text-embedding-3-small\",\n \"usage\": {\n \"prompt_tokens\": + 20,\n \"total_tokens\": 20\n }\n}\n" + headers: {} + status: + code: 200 + message: OK +version: 1 diff --git a/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/test_instrumentor.py b/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/test_instrumentor.py index 78d32c9d7..15d8c91d3 100644 --- a/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/test_instrumentor.py +++ b/python/instrumentation/openinference-instrumentation-haystack/tests/openinference/haystack/test_instrumentor.py @@ -3,7 +3,6 @@ from typing import Any, Dict, Generator, List, Optional, Sequence, Union import pytest -import respx from haystack import Document from haystack.components.builders import ChatPromptBuilder from haystack.components.builders.prompt_builder import PromptBuilder @@ -26,7 +25,6 @@ from haystack_integrations.components.rankers.cohere import ( # type: ignore[import-untyped] CohereRanker, ) -from httpx import Response from openai import AuthenticationError from opentelemetry.sdk.resources import Resource from opentelemetry.sdk.trace import TracerProvider @@ -448,7 +446,9 @@ def test_tool_calling_llm_span_has_expected_attributes( } } ) - assert "get_current_weather" in response["llm"]["replies"][0].text + chat_message = response["llm"]["replies"][0] + tool_call = chat_message.tool_calls[0] + assert tool_call.tool_name == "get_current_weather" spans = in_memory_span_exporter.get_finished_spans() assert len(spans) == 2 @@ -729,8 +729,8 @@ def test_cohere_reranker_span_has_expected_attributes( ) ranker_response = response["ranker"] assert len(response_documents := ranker_response["documents"]) == 2 - assert "Lionel Messi" in response_documents[0].text - assert "Paul Graham" in response_documents[1].text + assert "Lionel Messi" in response_documents[0].content + assert "Paul Graham" in response_documents[1].content spans = in_memory_span_exporter.get_finished_spans() assert len(spans) == 2 @@ -837,26 +837,16 @@ def test_serperdev_websearch_retriever_span_has_expected_attributes( assert not attributes +@pytest.mark.vcr( + decode_compressed_response=True, + before_record_request=remove_all_vcr_request_headers, + before_record_response=remove_all_vcr_response_headers, +) def test_openai_document_embedder_embedding_span_has_expected_attributes( openai_api_key: str, in_memory_span_exporter: InMemorySpanExporter, setup_haystack_instrumentation: Any, - respx_mock: Any, ) -> None: - respx.post("https://api.openai.com/v1/embeddings").mock( - return_value=Response( - 200, - json={ - "object": "list", - "data": [ - {"object": "embedding", "index": 0, "embedding": [1, 2, 3]}, - {"object": "embedding", "index": 1, "embedding": [4, 5, 6]}, - ], - "model": "text-embedding-3-small", - "usage": {"prompt_tokens": 20, "total_tokens": 20}, - }, - ) - ) pipe = Pipeline() embedder = OpenAIDocumentEmbedder(model="text-embedding-3-small") pipe.add_component("embedder", embedder) @@ -872,9 +862,9 @@ def test_openai_document_embedder_embedding_span_has_expected_attributes( ) assert (response_documents := response["embedder"].get("documents")) is not None assert len(response_documents) == 2 - assert "Argentina won the World Cup in 2022." == response_documents[0].text + assert "Argentina won the World Cup in 2022." == response_documents[0].content assert response_documents[0].embedding is not None - assert "France won the World Cup in 2018." == response_documents[1].text + assert "France won the World Cup in 2018." == response_documents[1].content assert response_documents[1].embedding is not None spans = in_memory_span_exporter.get_finished_spans()