-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathds.py
196 lines (172 loc) · 8.16 KB
/
ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader, Dataset
import glob, os
import torchaudio
import time
from tqdm import tqdm
class DSDataset(Dataset):
def __init__(self, path, source):
super().__init__()
self.path = path
# self.input_data_list = glob.glob(f'{path}/*/wav/*/original.wav')
# self.target_data_list = glob.glob(f'{path}/*/wav/*/{source}.wav')
# self.input_data_list = glob.glob(f'{path}/60/0/original.wav')
# self.target_data_list = glob.glob(f'{path}/60/0/{source}.wav')
self.input_data_list = glob.glob(f'{path}/*/*/original.wav')
self.target_data_list = glob.glob(f'{path}/*/*/{source}.wav')
def __len__(self):
return len(self.input_data_list)
def __getitem__(self, index):
# song_name = self.input_data_list[index].split('/')[4]
audio, sr = torchaudio.load(self.input_data_list[index])
ride, sr = torchaudio.load(self.target_data_list[index])
# input_data = torch.Tensor([])
# target_data = torch.Tensor([])
duration = min(audio.size()[1], ride.size()[1])
# bins = sr * 2
# split = duration // bins + 1
audio, ride = audio[:, :duration], ride[:, :duration]
stfta = torch.stft(audio, n_fft=1023, hop_length=512, return_complex=False)
stftr = torch.stft(ride, n_fft=1023, hop_length=512, return_complex=False)
stfta, stftr = stfta.permute(1,2,0,3), stftr.permute(1,2,0,3)
frq,t,ch,com = stfta.size()
stfta, stftr = stfta.reshape(frq,t,ch*com), stftr.reshape(frq, t, ch*com)
# zero = torch.zeros(2, split*bins - duration)
# audio, ride = torch.cat((audio, zero), dim = 1),torch.cat((ride, zero), dim = 1)
# for i in range(audio.size()[1]//bins):
# stfta = torch.stft(audio[:,i*bins:(i+1)*bins],n_fft=1024,hop_length=128, return_complex=False)
# stftr = torch.stft(ride[:,i*bins:(i+1)*bins], n_fft=1024, hop_length=128, return_complex=False)
# stfta, stftr = stfta.permute(1,2,0,3), stftr.permute(1,2,0,3)
# frq, t, ch, com = stfta.size()
# stfta, stftr = stfta.reshape(frq,t,ch*com), stftr.reshape(frq, t,ch*com)
# input_data = torch.cat((input_data, stfta.unsqueeze(0)))
# target_data = torch.cat((target_data, stftr.unsqueeze(0)))
return stfta, stftr
class TransformerModel(nn.Module):
def __init__(self, nhead, num_layers,input_size,output_size, dim_feedforward, dropout=0.1):
super(TransformerModel, self).__init__()
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(input_size, nhead, dim_feedforward, dropout),
num_layers
)
self.linear = nn.Linear(input_size, output_size)
# self.transformer_decoder = nn.TransformerDecoder(
# nn.TransformerDecoderLayer(input_size, nhead, dim_feedforward, dropout),
# num_layers
# )
def forward(self, x):
# hihat에 어울리는 모델? #
x = x.permute(1,2,0)
src_mask = self.generate_squaresubsequence_mask(x.size(0)).to(x.device)
x = self.transformer_encoder(x, src_mask)
# x = self.linear(x)
x = x.permute(2,0,1)
# hihat에 어울리는 모델? #
# # ride에 어울리는 모델? #
# print('1', x.size())
# x = x.permute(1,2,0)
# src_mask = self.generate_squaresubsequence_mask(x.size(0)).to(x.device)
# x = self.transformer_encoder(x, src_mask)
# print('2',x.size())
# x = x.permute(2,0,1)
# print('3',x.size())
# # ride에 어울리는 모델? #
# x = x.permute(2,0,1,3)
# time, batch, freq, value = x.size()
# x = x.view(time*batch, freq, value)
# x = x.permute(0,2,1)
# src_mask = self.generate_squaresubsequence_mask(x.size(0)).to(x.device)
# x = self.transformer_encoder(x, src_mask)
# x = x.permute(0, 1, 2)
# x = self.linear(x)
# x = x.permute(0, 2, 1)
# x = x.view(time, batch, freq, value)
# x = x.permute(1, 2, 0, 3)
return x
def generate_squaresubsequence_mask(self, sz):
mask = (torch.triu(torch.ones(sz,sz))==1).transpose(0,1)
mask = mask.float().masked_fill(mask==0, float('-inf')).masked_fill(mask==1,float(0.0))
return mask
def train(model,data, epochs, sources, scheduler):
estart = time.time()
total_loss = 0
num = 0
for ep in range(epochs):
current_time = time.time()
for idx, (i,t) in enumerate(data):
i, t = i.to(device), t.to(device)
i, t = i.squeeze(0), t.squeeze(0)
optimizer.zero_grad()
output = model(i)
loss = criterion(output, t)
# print(f'loss : {loss.item()}, time : {time.time() - current_time}')
num+=1
total_loss += loss.item()
loss.backward()
optimizer.step()
# for inputs, targets in zip(i, t):
# inputs,targets = inputs.to(device), targets.to(device)
# optimizer.zero_grad()
# output = model(inputs)
# loss = criterion(output, targets)
# num+=1
# total_loss += loss.item()
# loss.backward()
# optimizer.step()
if (idx+1) % 100 == 0:
print(f"{sources}_EPOCH : {ep}_{idx+1}, LOSS : {total_loss/num}, TIME : {time.time() - current_time}")
torch.save(model.state_dict(), f'newds_{sources}.pth')
current_time = time.time()
torch.save(model.state_dict(), f'newds_{sources}.pth')
scheduler.step()
torch.save(model.state_dict(), f'newds_{sources}.pth')
print(f'{sources} TOTAL TIME : {time.time() - estart}, TOTAL LOSS : {total_loss / num}')
def test(model, path, source_name):
audio, sr = torchaudio.load(path)
# audio, sr = torchaudio.load('train/1/original.wav')
print('length : ', audio.size())
bins = sr * 2
input_data = torch.Tensor([])
for i in range(audio.size()[1]//bins):
stfta = torch.stft(audio[:,i*bins:(i+1)*bins],n_fft=1023,hop_length=512, return_complex=False)
stfta = stfta.permute(1,2,0,3)
frq, t, ch, com = stfta.size()
stfta = stfta.reshape(frq, t, ch*com)
input_data = torch.cat((input_data, stfta.unsqueeze(0)))
result_audio = torch.Tensor([])
print('hello' , input_data.size())
with torch.no_grad():
for i in input_data:
output = model(i.to(device))
frq, t, c = output.size()
output = output.reshape(frq, t, 2, 2)
output = output.permute(2,0,1,3)
stft = torch.istft(output.cpu(), n_fft=1023,hop_length=512)
result_audio = torch.cat((result_audio, stft), dim = 1)
result_audio = result_audio
print(result_audio.size())
torchaudio.save(f'{source_name}.wav', result_audio, sr)
# example usage
num_layers = 6
num_heads = 8
dropout = 0.2 # 0.1 = 라이드, 0.5 = 심벌
hidden_dim = 1024
device = "mps" if torch.backends.mps.is_available() and torch.backends.mps.is_built() else 'cpu'
# drum_path = '/Volumes/VIDEO/DrumSeparateSource/'
drum_path = 'temp'
for source in ['ride','kick','snare','hihat','tom','crash','clap']:
print(source, ' Start')
train_data = DSDataset(drum_path, source)
train_loader = DataLoader(train_data, batch_size=1, shuffle=True)
# criterion = nn.L1Loss()
criterion = nn.MSELoss()
model = TransformerModel(nhead=num_heads, input_size=512, output_size=512, dim_feedforward=hidden_dim, num_layers=num_layers).to(device)
# model.load_state_dict(torch.load(f'ds_{source}.pth'))
# model.load_state_dict(torch.load(f'newds_{source}.pth'))
optimizer = optim.Adam(params=model.parameters(), lr = 0.001) # 0.001 = 라이드가 좋음 0.0001 = 심벌이 좋음
scheduler = optim.lr_scheduler.MultiplicativeLR(optimizer=optimizer, lr_lambda= lambda epoch: 0.99 ** epoch)
train(model, train_loader, 20, source, scheduler)