forked from stevehoover/LF-Building-a-RISC-V-CPU-Core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRiscv_solution_full.tlv
213 lines (182 loc) · 10.1 KB
/
Riscv_solution_full.tlv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/risc-v_shell.tlv
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/main/lib/risc-v_shell_lib.tlv'])
//---------------------------------------------------------------------------------
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// x12 (a2): 10
// x13 (a3): 1..10
// x14 (a4): Sum
//
// m4_asm(ADDI, x14, x0, 0) // Initialize sum register a4 with 0
// m4_asm(ADDI, x12, x0, 1010) // Store count of 10 in register a2.
// m4_asm(ADDI, x13, x0, 1) // Initialize loop count register a3 with 0
// Loop:
// m4_asm(ADD, x14, x13, x14) // Incremental summation
// m4_asm(ADDI, x13, x13, 1) // Increment loop count by 1
// m4_asm(BLT, x13, x12, 1111111111000) // If a3 is less than a2, branch to label named <loop>
// Test result value in x14, and set x31 to reflect pass/fail.
//m4_asm(ADDI, x30, x14, 111111010100) // Subtract expected value of 44 to set x30 to 1 if and only iff the result is 45 (1 + 2 + ... + 9).
// m4_asm(BGE, x0, x0, 0) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0)
//m4_asm(ADD, x0, x7, x8) //added instruction to reflect change in value of register 0
//m4_asm_end()
//m4_define(['M4_MAX_CYC'], 50)
//---------------------------------------------------------------------------------
m4_test_prog()
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
/* verilator lint_on WIDTH */
\TLV
//Program Counter
$reset = *reset;
$pc[31:0] = >>1$next_pc;
$next_pc[31:0] = $reset ? 0 :
$taken_br ? $br_tgt_pc :// added this during constructing branch stage
$is_jal ? $br_tgt_pc :// added both Jump and link , jump and link register during final phase
$is_jalr ? $jalr_tgt_pc :
($pc + 32'd4);
//Instruction Memory access
`READONLY_MEM($pc/*address*/, $$instr[31:0]/*Instruction to be stored here*/);
//Decode logic
//Instruction type - immediate,register,jump,branch,store,upper immediate
$is_i_instr = $instr[6:2] ==?5'b0000x || // it says whether 5bits in opcde match with given combination
$instr[6:2] ==?5'b001x0 ||
$instr[6:2] ==?5'b11001;
$is_r_instr = $instr[6:2] ==?5'b011x0 ||
$instr[6:2] ==?5'b01011 ||
$instr[6:2] ==?5'b10100;
$is_s_instr = $instr[6:2] ==?5'b0100x;
$is_u_instr = $instr[6:2] ==?5'b0x101;
$is_b_instr = $instr[6:2] ==?5'b11000;
$is_j_instr = $instr[6:2] ==?5'b11011;
//Instruction Fileds ($funct3, $rs1, $rs2, $rd, $opcode)
$opcode[6:0] = $instr[6:0];
$rd[4:0] = $instr[11:7];
$funct3[2:0] = $instr[14:12];
$rs1[4:0] = $instr[19:15];
$rs2[4:0] = $instr[24:20];
//Load instruction using only opcode
$is_load = ($opcode ==? 7'b0x00011);
//Determining validity i.e in which all instr are valid(look at the base instructions format table)
$rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr;
$rs1_valid = $is_r_instr || $is_s_instr || $is_b_instr || $is_i_instr;
$rd_valid = $is_r_instr || $is_u_instr || $is_j_instr || $is_i_instr;
$funct3_valid = $is_r_instr || $is_s_instr || $is_b_instr || $is_i_instr;
$imm_valid = $is_s_instr || $is_b_instr || $is_i_instr || $is_u_instr || $is_j_instr;
//produces no logic,but looks like a signal consumption,so warnings are suppressed --line could be removed after signals are used
`BOGUS_USE($rd $rd_valid $rs1 $rs1_valid $rs2 $rs2_valid $opcode $imm_valid $funct3 $funct3_valid)
//Immediate field logic
$imm[31:0] = $is_i_instr ? { {21{$instr[31]}}, $instr[30:20] } :
$is_s_instr ? { {21{$instr[31]}}, $instr[11:7], $instr[30:25] } :
$is_j_instr ? { {12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0 } :
$is_b_instr ? { {20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0 } :
$is_u_instr ? { $instr[31:12], 12'b0 } :
32'b0; // Default
//Determining specific operation using (opcode,funct3,funct7)
$dec_bits[10:0] = {$instr[30], $funct3, $opcode};
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_add = $dec_bits ==? 11'b0_000_0110011;
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_slti = $dec_bits ==? 11'bx0100010011;
$is_sltiu = $dec_bits ==? 11'bx0110010011;
$is_xori = $dec_bits ==? 11'bx1000010011;
$is_ori = $dec_bits ==? 11'bx1100010011;
$is_andi = $dec_bits ==? 11'bx1110010011;
$is_slli = $dec_bits ==? 11'b00010010011;
$is_srli = $dec_bits ==? 11'b01010010011;
$is_srai = $dec_bits ==? 11'b11010010011;
$is_sub = $dec_bits ==? 11'b10000110011;
$is_sll = $dec_bits ==? 11'b00010110011;
$is_slt = $dec_bits ==? 11'b00100110011;
$is_sltu = $dec_bits ==? 11'b00110110011;
$is_xor = $dec_bits ==? 11'b01000110011;
$is_srl = $dec_bits ==? 11'b01010110011;
$is_sra = $dec_bits ==? 11'b11010110011;
$is_or = $dec_bits ==? 11'b01100110011;
$is_and = $dec_bits ==? 11'b01110110011;
$is_lui = $dec_bits ==? 11'bxxxx0110111;
$is_auipc = $dec_bits ==? 11'bxxxx0010111;
$is_jal = $dec_bits ==? 11'bxxxx1101111;
$is_jalr = $dec_bits ==? 11'bx0001100111;
//there will be many warnings for these unused signals so use this to keep log clean
`BOGUS_USE($imm $ $is_beq $is_bne $is_blt $is_bge $is_bltu $is_bgeu $is_add $is_addi)
// Checking if rs1 and rs2 are valid for instruction to enable read and read data outputed to src1_value and 2
$rd_en1 = $rs1_valid;
$rd_en2 = $rs2_valid;
$rd_index1[4:0] = $rd_en1 ? $rs1 : 0;// condition ? value_if_true : value_if_false;
$rd_index2[4:0] = $rd_en2 ? $rs2 : 0;
$src1_value[31:0] = $rd_data1; // I made a mistake of not specifying 32 bit in src1_value due to which i was getting 0 and 1
$src2_value[31:0] = $rd_data2; // i.e $src1_value = $rd_data1-- which stores single bit result in src1_value
//----> Full ALU unit code
// SLTU and SLTI (set if less than,unsigned) results:
$sltu_rslt[31:0] = {31'b0, $src1_value < $src2_value};
$sltiu_rslt[31:0] = {31'b0, $src1_value < $imm};
// SRA and SRAI (shift right,arithmetic) results:
// sign-extended src1
$sext_src1[63:0] = {{32{$src1_value[31]}}, $src1_value};
// 64-bit sign-extended results to be truncated
$sra_rslt[63:0] = $sext_src1 >> $src2_value[4:0];
$srai_rslt[63:0] = $sext_src1 >> $imm[4:0];
//ALU support for all instructions --Started with add and addi instruction now extended for all
$result[31:0] = $is_andi ? $src1_value & $imm:
$is_ori ? $src1_value | $imm:
$is_xori ? $src1_value ^ $imm:
$is_addi ? $src1_value + $imm:
$is_slli ? $src1_value << $imm[5:0]:
$is_srli ? $src1_value >> $imm[5:0]:
$is_and ? $src1_value & $src2_value:
$is_or ? $src1_value | $src2_value:
$is_xor ? $src1_value ^ $src2_value:
$is_add ? $src1_value + $src2_value:
$is_sub ? $src1_value - $src2_value:
$is_sll ? $src1_value << $src2_value:
$is_srl ? $src1_value >> $src2_value:
$is_sltu ? $sltu_rslt:
$is_sltiu ? $sltiu_rslt:
$is_lui ? {$imm[31:12], 12'b0}:
$is_auipc ? $pc + {$imm[31:12], 12'b0}:
$is_jal ? $pc + 32'd4:
$is_jalr ? $pc + 32'd4:
$is_slt ? (($src1_value[31] == $src2_value[31]) ? $sltu_rslt : {31'b0, $src1_value[31]}):
$is_slti ? (($src1_value[31] == $imm[31]) ? $sltu_rslt : {31'b0, $src1_value[31]}):
$is_sra ? $sra_rslt[31:0]:
$is_srai ? $srai_rslt[31:0]:
($is_load || $is_s_instr) ? $src1_value + $imm: // Calculation of effective address in AlU stage for load and store
32'b0;
//Adding a MUX to select either result or $ld_data depending on instruction
$result_write_rf[31:0] = $is_load ? $ld_data[31:0] : $result;
//Register File write
$wr_en = $rd_valid && $rd != 0;
$wr_index[4:0] = $wr_en ? $rd : 0;
$wr_data[31:0] = $result;
//Branch Taken or not
$taken_br = $is_beq ? ($src1_value == $src2_value ? 1'b1 : 1'b0) : // 1'b1 and 1'b0 is taken so that it acts as select line for mux in program counter
$is_bne ? ($src1_value != $src2_value ? 1'b1 : 1'b0) : // where if $taken_br = 1'b1 means branch is taken and next_pc = pc + immediate value otherwise pc = pc +32d4
$is_blt ? (($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31]) ? 1'b1 : 1'b0) :
$is_bge ? (($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31]) ? 1'b1 : 1'b0) :
$is_bltu ? ($src1_value < $src2_value ? 1'b1 : 1'b0) :
$is_bgeu ? ($src1_value >= $src2_value ? 1'b1 : 1'b0) :
1'b0 ;
// Branch target pc
$br_tgt_pc[31:0] = $pc[31:0] + $imm;
$jalr_tgt_pc[31:0] = $src1_value + $imm;
// Assert these to end simulation (before Makerchip cycle limit).
m4+tb()
*failed = *cyc_cnt > M4_MAX_CYC;
m4+rf(32, 32, $reset, $wr_en, $wr_index[4:0], $wr_data[31:0], $rd_en1, $rd_index1[4:0], $rd_data1, $rd_en2, $rd_index2[4:0], $rd_data2)
m4+dmem(32, 32, $reset, $result[6:2], $is_s_instr, $src2_value, $is_load, $ld_data) //($addr[4:0], $wr_en, $wr_data[31:0], $rd_en, $rd_data)
m4+cpu_viz()
\SV
endmodule