forked from Pymol-Scripts/Pymol-script-repo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotkit.py
261 lines (220 loc) · 10.8 KB
/
rotkit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
'''
Described at PyMOL wiki:
http://www.pymolwiki.org/index.php/rotkit
-------------------------------------------------------------------------------
Name: rotkit.py examples
Purpose: To rotate molecules easier
Author: Troels Linnet
Created: 30/08/2011
Copyright: (c) Troels Linnet 2011
Licence: Free
-------------------------------------------------------------------------------
'''
from pymol import cmd
import math
import os
import platform
def printMat(matrix):
print("%s %s %s %s \n%s %s %s %s \n%s %s %s %s \n%s %s %s %s" % (matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], matrix[9], matrix[10], matrix[11], matrix[12], matrix[13], matrix[14], matrix[15]))
return None
def getxyz(Sel):
if type(Sel) == list and len(Sel) == 3:
return Sel, "listXYZ"
if type(Sel) == str and Sel[0] == "[" and Sel[-1] == "]":
Selsplit = list(Sel[1:-1].split(","))
Selsplit = [float(x) for x in Selsplit]
return Selsplit, "strXYZ"
if type(Sel) == str:
pos = cmd.get_atom_coords(Sel)
return pos, "selXYZ"
def vector(Sel1, Sel2):
PosSel1 = getxyz(Sel1)[0]
PosSel2 = getxyz(Sel2)[0]
vectorcalc = [PosSel2[0] - PosSel1[0], PosSel2[1] - PosSel1[1], PosSel2[2] - PosSel1[2]]
return(vectorcalc)
def vectoradd(Sel1, Sel2):
PosSel1 = getxyz(Sel1)[0]
PosSel2 = getxyz(Sel2)[0]
vectorcalc = [PosSel1[0] + PosSel2[0], PosSel1[1] + PosSel2[1], PosSel1[2] + PosSel2[2]]
return(vectorcalc)
def vectorstr(vector):
return("[%s,%s,%s]" % (vector[0], vector[1], vector[2]))
def transmat(vector, dist=1):
mat = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, dist * vector[0], dist * vector[1], dist * vector[2], 1]
return(mat)
def unitvector(vector):
vectorlen = math.sqrt(math.pow(vector[0], 2) + math.pow(vector[1], 2) + math.pow(vector[2], 2))
vectordiv = [vector[0] / vectorlen, vector[1] / vectorlen, vector[2] / vectorlen]
return(vectordiv, vectorlen)
def radangle(angle):
return(math.radians(angle))
def rotmat(angle, vectornorm, pointcoord):
# From: http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ Section 6.2
u, v, w = vectornorm
a, b, c = pointcoord
makerotmat = [(math.pow(u, 2) + (math.pow(v, 2) + math.pow(w, 2)) * math.cos(angle)),
(u * v * (1 - math.cos(angle)) - w * math.sin(angle)),
(u * w * (1 - math.cos(angle)) + v * math.sin(angle)),
((a * (math.pow(v, 2) + math.pow(w, 2)) - u * (b * v + c * w)) * (1 - math.cos(angle)) + (b * w - c * v) * math.sin(angle)),
(u * v * (1 - math.cos(angle)) + w * math.sin(angle)),
(math.pow(v, 2) + (math.pow(u, 2) + math.pow(w, 2)) * math.cos(angle)),
(v * w * (1 - math.cos(angle)) - u * math.sin(angle)),
((b * (math.pow(u, 2) + math.pow(w, 2)) - v * (a * u + c * w)) * (1 - math.cos(angle)) + (c * u - a * w) * math.sin(angle)),
(u * w * (1 - math.cos(angle)) - v * math.sin(angle)),
(v * w * (1 - math.cos(angle)) + u * math.sin(angle)),
(math.pow(w, 2) + (math.pow(u, 2) + math.pow(v, 2)) * math.cos(angle)),
((c * (math.pow(u, 2) + math.pow(v, 2)) - w * (a * u + b * v)) * (1 - math.cos(angle)) + (a * v - b * u) * math.sin(angle)),
(0), (0), (0), (1), ]
return(makerotmat)
def rotateline(Pos1, Pos2, degangle, molecule):
diffvector = vector(Pos1, Pos2)
uvector = unitvector(diffvector)[0]
xyz = getxyz(Pos2)[0]
rmat = rotmat(radangle(float(degangle)), uvector, xyz)
cmd.transform_selection(molecule, rmat)
return(None)
cmd.extend("rotateline", rotateline)
def mutate(molecule, chain, resi, target="CYS", mutframe="1"):
target = target.upper()
cmd.wizard("mutagenesis")
cmd.do("refresh_wizard")
cmd.get_wizard().set_mode("%s" % target)
selection = "/%s//%s/%s" % (molecule, chain, resi)
cmd.get_wizard().do_select(selection)
cmd.frame(str(mutframe))
cmd.get_wizard().apply()
# cmd.set_wizard("done")
cmd.set_wizard()
# cmd.refresh()
#### Example in pymol
# python
#MutList = [["5NT","A",308],["5NT","A",513],["5NT","B",513]]
# for p,c,r in MutList:
# rotkit.mutate(p, chain=c, resi=r, target="CYS", mutframe=1)
# Have do mutate first before selecting, or else it only select the lase?
# for p,c,r in MutList:
# cmd.select("%s%s%s"%(p,c,r),"/%s//%s/%s"%((p,c,r)))
# python end
cmd.extend("mutate", mutate)
def toline(Pos1, Pos2, atom, molecule, dist=1):
dist = float(dist)
diffvector = vector(atom, Pos2)
move = transmat(diffvector)
cmd.transform_selection("%s" % molecule, move)
diffvector = vector(Pos1, Pos2)
uvector = unitvector(diffvector)[0]
move = transmat(uvector, dist)
cmd.transform_selection("%s" % molecule, move)
return(None)
cmd.extend("toline", toline)
def crossprod(Vector1, Vector2):
return([Vector1[1] * Vector2[2] - Vector1[2] * Vector2[1], Vector1[2] * Vector2[0] - Vector1[0] * Vector2[2], Vector1[0] * Vector2[1] - Vector1[1] * Vector2[0]])
def crosspoint(Pos1, crossprod):
Imp1 = getxyz(Pos1)[0]
Imp2 = getxyz(crossprod)[0]
return([Imp1[0] + Imp2[0], Imp1[1] + Imp2[1], Imp1[2] + Imp2[2]])
def VectorToMatrix(Vector, MatColRank=4):
try:
import numpy
except ImportError:
from modules import numpy
nextrow = range(MatColRank, MatColRank ** 2, MatColRank)
rowsall = []
rowcurrent = []
for i in range(len(Vector)):
if i in nextrow:
rowsall.append(rowcurrent)
rowcurrent = []
rowcurrent.append(Vector[i])
else:
rowcurrent.append(Vector[i])
print rowsall
return(numpy.matrix(rowsall))
def findMinMax(datalist, index):
minimum = datalist[0][index]
maximum = datalist[0][index]
datacolumn = []
for l in datalist:
datacolumn.append(l[index])
if l[index] < minimum:
minimum = l[index]
if l[index] > maximum:
maximum = l[index]
return(minimum, maximum, datacolumn)
def createdirs(dirname):
if platform.system() == 'Windows':
Newdir = os.getcwd() + "\\%s\\" % dirname
if platform.system() == 'Linux':
Newdir = os.getcwd() + "/%s/" % dirname
if not os.path.exists(Newdir):
os.makedirs(Newdir)
return(Newdir)
def makehistogram(datalist, dataname="Histogram", datalistindex=2, nrbins=100, binrange=[0, 0]):
try:
import numpy
except ImportError:
from modules import numpy
fileout_name = "%s" % dataname + ".dat"
fileout_write = open(fileout_name, "w")
gnuplot_write = open("%s" % dataname + ".plt", "w")
datacolumnMin, datacolumnMax, datacolumn = findMinMax(datalist, datalistindex)
if binrange[1] == 0:
xdelta = datacolumnMax - datacolumnMin
binrange[0] = datacolumnMin - xdelta / 2
binrange[1] = datacolumnMax + xdelta / 2
# print binrange
(n, binval) = numpy.histogram(datacolumn, bins=int(nrbins), range=(binrange[0], binrange[1]), normed=False)
binwidthDist = (binrange[1] - binrange[0]) / nrbins
DistHist = []
# Normalize the histogram
for i in range(len(n)):
DistHist.append([binval[i], n[i], float(n[i]) / len(datacolumn)])
# print DistHist
DistHistMin, DistHistMax, tmp = findMinMax(DistHist, 2)
# print DistHistMin,DistHistMax
ydelta = DistHistMax - DistHistMin
# Now write the output
fileout_write.write("#Datapoints=%s" % len(datacolumn) + "\n")
fileout_write.write("#Dist[Ang] Frequency[#] Probability" + "\n")
for dp in DistHist:
textline = "%4.2f %5i %18.5f" % (dp[0], dp[1], dp[2])
fileout_write.write(textline + "\n")
gnuplot_write.write('cd "%s"' % os.getcwd() + '\n')
gnuplot_write.write('set term postscript eps enhanced color' + '\n')
gnuplot_write.write('' + '\n')
gnuplot_write.write('set style line 1 lt 1 lw 3 linecolor rgb "red"' + '\n')
gnuplot_write.write('set style line 2 lt 1 lw 3 linecolor rgb "green"' + '\n')
gnuplot_write.write('set style line 3 lt 1 lw 3 linecolor rgb "blue"' + '\n')
gnuplot_write.write('set style line 4 lt 1 lw 3 linecolor rgb "pink"' + '\n')
gnuplot_write.write('set style line 5 lt 1 lw 0 linecolor rgb "red"' + '\n')
gnuplot_write.write('binwidthDist=%s' % binwidthDist + '\n')
gnuplot_write.write('set title "Normalized distance histogram"' + '\n')
gnuplot_write.write('set xlabel "Distance [Ang]"' + '\n')
gnuplot_write.write('set xrange[%s:%s]' % (binrange[0], binrange[1]) + '\n')
gnuplot_write.write('set ylabel "Density"' + '\n')
gnuplot_write.write('set yrange[%s:%s]' % (DistHistMin, DistHistMax / binwidthDist) + '\n')
gnuplot_write.write('set ytics nomirror' + '\n')
gnuplot_write.write('set y2label "Integrated Bin probability"' + '\n')
gnuplot_write.write('set y2range[%s:%s]' % (DistHistMin, DistHistMax) + '\n')
gnuplot_write.write('set y2tics border' + '\n')
gnuplot_write.write('' + '\n')
gnuplot_write.write('A=1' + '\n')
gnuplot_write.write('sigma2=%s' % (xdelta / 6.0) + '\n')
gnuplot_write.write('center=%s' % (datacolumnMin + xdelta / 2) + '\n')
gnuplot_write.write('g(x) = (A*1.0/sqrt(2*pi*sigma2))*exp(-(x-center)**2/(2*sigma2))' + '\n')
gnuplot_write.write('fit g(x) "%s" using 1:($3/binwidthDist) via sigma2,center' % fileout_name + '\n')
gnuplot_write.write('' + '\n')
gnuplot_write.write('set label "g(x)= A*1/(sqrt(2{/Symbol p}{/Symbol s}^2)) * exp(-(x-{/Symbol m})^2/(2{/Symbol s}^2))" at graph 0.05, graph 0.85' + '\n')
gnuplot_write.write('set label "A= %g", A at graph 0.05, graph 0.80' + '\n')
gnuplot_write.write('set label "{/Symbol s}= %g", sqrt(sigma2) at graph 0.05, graph 0.75' + '\n')
gnuplot_write.write('set label "{/Symbol m}= %g", center at graph 0.05, graph 0.70' + '\n')
gnuplot_write.write('' + '\n')
gnuplot_write.write('set label "Binwidth= %g", binwidthDist at graph 0.05, graph 0.95' + '\n')
gnuplot_write.write('set label "Datapoints= %g", ' + '%s' % len(datacolumn) + ' at graph 0.05, graph 0.90' + '\n')
gnuplot_write.write('set output "%s.eps"' % (fileout_name[:-4]) + '\n')
gnuplot_write.write('plot "%s" using 1:($3/binwidthDist) title "%s" with boxes fs solid 0.4 noborder,\\' % (fileout_name, fileout_name[:-4]) + '\n')
gnuplot_write.write('g(x) title "Fitted normal distribution g(x)" lw 4,\\' + '\n')
gnuplot_write.write('"%s" using 1:3 title "" with histeps ls 5 axis x1y2' % fileout_name + '\n')
fileout_write.close()
gnuplot_write.close()
return(DistHist)