forked from EddyRivasLab/easel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesl_graph.c
231 lines (199 loc) · 8.33 KB
/
esl_graph.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* Graph algorithms
*
* Contents:
* 1. Maximum bipartite matching
* 2. Unit tests
* 3. Test driver
*/
#include <esl_config.h>
#include <stdlib.h>
#include <stdio.h>
#include "easel.h"
#include "esl_matrixops.h"
#include "esl_vectorops.h"
/* Function: esl_graph_MaxBipartiteMatch()
* Synopsis: Maximum bipartite matching algorithm.
* Incept: SRE, Tue 26 Jun 2018
*
* Purpose: Find a maximum match for a bipartite graph. For two sets,
* one with <M> elements and the other with <N>, the <M> by
* <N> input adjacency matrix <A> defines $A_{ij} =$TRUE
* for allowed matches between the two sets, otherwise
* FALSE. The algorithm defines a maximal matching
* bipartite graph <G> with a subset of those edges.
*
* The total number of edges in <G> is returned in
* <*ret_edges>. By definition, it is $\leq \min(M,N)$;
* equality means a "perfect" match (especially for the
* case $M=N$).
*
* Optionally, the caller can also obtain <G> itself, by
* passing a non-NULL <opt_G> ptr. Edges in <G> are defined
* by $G_{ij} =$ TRUE or FALSE.
*
* Args: A : input adjacency matrix. A[i=0..M-1][j=0..N-1]
* M : number of elements in 1st set (rows in <A>)
* N : number of elements in 2nd set (cols in <A>)
* opt_G : optRETURN: maximal matching bipartite graph
* ret_nedges : RETURN: number of edges in <G>
*
* Returns: <eslOK> on success, *ret_edges is the number of edges in <G>,
* and *opt_G (if <&G> was passed) is a ptr to <G>.
*
* Throws: <eslEMEM> on allocation failure. Now <*ret_nedges> is 0 and
* <*opt_G>, if it was requested, is NULL.
*
* Notes: This is a simplified, specialized version of the
* Ford-Fulkerson maximum flow algorithm. $A_{ij}$ is
* treated as the capacity of directed edges $i \rightarrow
* j$, and the graph is augmented with a source and a sink
* vertex; source $\rightarrow i$ for all $i$, sink
* $\rightarrow j$ for all j, with implicit capacity of 1 on
* all these entry/exit edges.
*/
int
esl_graph_MaxBipartiteMatch(int **A, int M, int N, int ***opt_G, int *ret_nedges)
{
int **G = NULL; // bipartite graph we're building, as a flow network. Gij = 1|0; 1 means i-j link.
int *Ga = NULL; // ... augmented with source -> i flow; Ga[0..M-1] = 1|0.
int *Gz = NULL; // ... and with j -> sink flow; Gz[0..N-1] = 1|0.
int *parent1 = NULL; // Parent in path for vertex in 1st set: parent1[i=0..M-1] = 0..N-1 (forward edges only); -1 (no edge yet)
int *parent2 = NULL; // Parent in path for vertex in 2nd set: parent2[j=0..N-1] = 0..M-1 (reverse edges); M (forward edge to sink); -1 (no edge yet)
int par0; // Parent for source in a new path
int found_path; // TRUE when we find a path that can increase flow
int done; // TRUE while breadth first search is still extending at least one path
int nedges = 0; // number of edges in G
int i,j;
int status;
/* Allocations. */
if (( G = esl_mat_ICreate(M, N) ) == NULL) { status = eslEMEM; goto ERROR; }
ESL_ALLOC(Ga, sizeof(int) * M);
ESL_ALLOC(Gz, sizeof(int) * N);
ESL_ALLOC(parent1, sizeof(int) * M);
ESL_ALLOC(parent2, sizeof(int) * N);
/* G is initialized with no edges. */
esl_vec_ISet(Ga, M, 0);
esl_vec_ISet(Gz, N, 0);
esl_mat_ISet(G, M, N, 0);
// Given the current G: can we identify a path that increases the overall flow?
while (1)
{
found_path = FALSE;
esl_vec_ISet(parent1, M, -1);
for (j = 0; j < N; j++) parent2[j] = Gz[j] ? -1 : M; // j->sink possible if the edge isn't used in G yet; it automatically has capacity of 1.
/* Breadth first search (Edmonds/Karp) to find an augmenting path, until there isn't one */
do {
done = TRUE; // until proven otherwise
for (j = 0; j < N; j++) // breadth-first search back to i from all active j's
if (parent2[j] != -1)
for (i = 0; i < M; i++)
if (parent1[i] == -1 && A[i][j] && ! G[i][j]) { parent1[i] = j; done = FALSE; break; } // can make forward link if 1) capacity and 2) not used in G yet.
for (i = 0; i < M; i++) // breadth-first search back to source from all active i's
if (parent1[i] != -1 && ! Ga[i]) { par0 = i; found_path = TRUE; break; }
for (i = 0; i < M; i++) // active i's can also go back a reverse link to j's
if (parent1[i] != -1)
for (j = 0; j < N; j++)
if (parent2[j] == -1 && G[i][j]) { parent2[j] = i; done = FALSE; break; }
} while (! found_path && ! done);
if (! found_path) break; // We're done. This is the only way.
// Now follow the path. Turn forward links on; turn reverse links off.
i = par0;
Ga[i] = 1;
while (1)
{
j = parent1[i]; G[i][j] = 1; nedges++; // add a forward edge
if (parent2[j] == N) { Gz[j] = 1; break; } // end path
i = parent2[j]; G[i][j] = 0; nedges--; // subtract a reverse edge
}
}
free(Ga); free(Gz);
free(parent1); free(parent2);
if (opt_G) *opt_G = G; else esl_mat_IDestroy(G);
*ret_nedges = nedges;
return eslOK;
ERROR:
esl_mat_IDestroy(G);
free(Ga); free(Gz);
free(parent1); free(parent2);
if (opt_G) *opt_G = NULL;
*ret_nedges = 0;
return status;
}
/*****************************************************************
* 2. Unit tests
*****************************************************************/
#ifdef eslGRAPH_TESTDRIVE
#include "esl_mixdchlet.h"
/* utest_perfect()
*
* Constructs a known <G0> as a perfect bipartite match, shuffled;
* then constructs <A> by adding a random number of extra edges to
* it. Infer <G> from <A>. The inferred <G> therefore should be
* perfect (nedges = n), and in the case of <= 1 extra added edge, <G0
* == G>.
*/
static void
utest_perfect(ESL_RANDOMNESS *rng)
{
char msg[] = "esl_graph utest_perfect failed";
int n = 1 + esl_rnd_Roll(rng, 20); // 1..20
int nextra = (n == 1 ? 0 : esl_rnd_Roll(rng, n*n-n)); // 0..N^2-N-1
int *shuf = NULL;
int **G0 = esl_mat_ICreate(n, n);
int **A = esl_mat_ICreate(n, n);
int **G = NULL;
int ntot = n; // number of edges in A
int nedges; // number of edges in G
int i,j,e;
if ((shuf = malloc(sizeof(int) * n)) == NULL) esl_fatal(msg);
for (i = 0; i < n; i++) shuf[i] = i;
esl_vec_IShuffle(rng, shuf, n);
esl_mat_ISet(G0, n, n, 0);
for (i = 0; i < n; i++)
G0[i][shuf[i]] = TRUE;
esl_mat_ICopy(G0, n, n, A);
for (e = 0; e < nextra; e++)
{
i = esl_rnd_Roll(rng, n);
j = esl_rnd_Roll(rng, n);
if (! A[i][j]) ntot++;
A[i][j] = TRUE;
}
esl_graph_MaxBipartiteMatch(A, n, n, &G, &nedges);
if (nedges != n) esl_fatal(msg);
if (ntot <= n+1 && esl_mat_ICompare(G, G0, n, n) != eslOK) esl_fatal(msg);
free(shuf);
esl_mat_IDestroy(A);
esl_mat_IDestroy(G);
esl_mat_IDestroy(G0);
}
#endif // eslGRAPH_TESTDRIVE
/*****************************************************************
* 3. Test driver
*****************************************************************/
#ifdef eslGRAPH_TESTDRIVE
#include "easel.h"
#include "esl_getopts.h"
#include "esl_random.h"
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgrp */
{"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0},
{"-s", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to <n>", 0},
{ 0,0,0,0,0,0,0,0,0,0},
};
static char usage[] = "[-options]";
static char banner[] = "test driver for graph module";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *rng = esl_randomness_Create(esl_opt_GetInteger(go, "-s"));
fprintf(stderr, "## %s\n", argv[0]);
fprintf(stderr, "# rng seed = %" PRIu32 "\n", esl_randomness_GetSeed(rng));
utest_perfect(rng);
fprintf(stderr, "# status = ok\n");
esl_randomness_Destroy(rng);
esl_getopts_Destroy(go);
return 0;
}
#endif // eslGRAPH_TESTDRIVE