-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain_backbone.py
133 lines (105 loc) · 5.09 KB
/
pretrain_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
os.environ['USE_PYGEOS'] = '0' # To supress a warning from geopandas
import copy
import json
import wandb
import torch
import numpy as np
import pandas as pd
from utils import *
from models import ImageEncoder
from torchvision.transforms import Compose, RandomApply, RandomHorizontalFlip, RandomRotation, RandomVerticalFlip, Normalize
from datetime import datetime
# Get parser and parse arguments
parser = get_main_parser()
args = parser.parse_args()
args_dict = vars(args)
# If exp_name is None then generate one with the current time
if args.exp_name == 'None':
args.exp_name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
# Start wandb configs
wandb.init(
project='Pretrain Spatial Transcriptomics',
name=args.exp_name,
config=args_dict
)
print("pretrain")
# Get save path and create is in case it is necessary
save_path = os.path.join('results', args.exp_name)
os.makedirs(save_path, exist_ok=True)
# Save script arguments in json file
with open(os.path.join(save_path, 'script_params.json'), 'w') as f:
json.dump(args_dict, f, indent=4)
# Set manual seeds and get cuda
seed_everything(17)
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
use_cuda = torch.cuda.is_available()
# Get dataset from the values defined in args
dataset = get_dataset_from_args(args=args)
# Declare train and test loaders
train_dataloader, val_dataloader, test_dataloader = dataset.get_pretrain_dataloaders(
layer = args.prediction_layer,
batch_size = args.batch_size,
shuffle = args.shuffle,
use_cuda = use_cuda
)
# Define transformations for the patches
train_transforms = Compose([Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
RandomHorizontalFlip(p=0.5),
RandomVerticalFlip(p=0.5),
RandomApply([RandomRotation((90, 90))], p=0.5)])
if args.average_test:
test_transforms = Compose([Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), EightSymmetry()])
else:
test_transforms = Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# Declare device
device = torch.device("cuda" if use_cuda else "cpu")
# Declare model
model = ImageEncoder(backbone=args.img_backbone, use_pretrained=args.img_use_pretrained, latent_dim=dataset.adata.n_vars).to(device)
# Print the number of parameters of the model
num_params = sum(p.numel() for p in model.parameters()) # if p.requires_grad) for just trainable parameters
print(f'Number of model parameters: {num_params}')
# Define the 3 criterions and optimizer
criterion = torch.nn.MSELoss()
try:
optimizer = getattr(torch.optim, args.optimizer)(model.parameters(), lr=args.lr, momentum=args.momentum)
except:
optimizer = getattr(torch.optim, args.optimizer)(model.parameters(), lr=args.lr)
# Start metric dataframe as None
metric_df = None
# Define dict to know whether to maximize or minimize each metric
max_min_dict = {'PCC-Gene': 'max', 'PCC-Patch': 'max', 'MSE': 'min', 'MAE': 'min', 'R2-Gene': 'max', 'R2-Patch': 'max', 'Global': 'max'}
# Define best values
best_val_optim_metric = -np.inf if max_min_dict[args.optim_metric] == 'max' else np.inf
best_model_wts = copy.deepcopy(model.state_dict())
# Cycle over epochs
for i in range(args.epochs):
# Train during one epoch
train_simple(model, train_dataloader, criterion, optimizer, train_transforms)
# Test in train and val
train_metric_dict, train_output_dict = test_simple_and_save_output(model, train_dataloader, criterion, test_transforms)
val_metric_dict, val_output_dict = test_simple_and_save_output(model, val_dataloader, criterion, test_transforms)
# Update metrics df
metric_df = update_save_metric_df(metric_df, i, train_metric_dict, val_metric_dict, os.path.join(save_path, 'progress.csv'))
# Make checkpoints every 50 epochs
if (i+1)%50 == 0:
checkpoint_wts = copy.deepcopy(model.state_dict())
torch.save(checkpoint_wts, os.path.join(save_path, f'model_checkpoint_epoch_{i}.pt'))
# Determine if we got a new best model (robust to minimization or maximization of any metric)
got_best_min = (max_min_dict[args.optim_metric] == 'min') and (val_metric_dict[args.optim_metric] < best_val_optim_metric)
got_best_max = (max_min_dict[args.optim_metric] == 'max') and (val_metric_dict[args.optim_metric] > best_val_optim_metric)
# If we got a new best model, save it and log the metrics in wandb
if got_best_min or got_best_max:
best_val_optim_metric = val_metric_dict[args.optim_metric]
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, os.path.join(save_path, 'best_model.pt'))
wandb.log({f'best_val_{key}':val for key, val in val_metric_dict.items()})
# Load best model and test it
model.load_state_dict(best_model_wts)
if test_dataloader is not None:
test_metric_dict, test_output_dict = test_simple_and_save_output(model, test_dataloader, criterion, test_transforms)
wandb.log({f'test_{key}':val for key, val in test_metric_dict.items()})
# Print the best result
print('Best results:')
print(metric_df[metric_df['val_PCC-Gene'] == metric_df['val_PCC-Gene'].max()])
wandb.finish()