-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_STNet.py
176 lines (140 loc) · 6.62 KB
/
test_STNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
os.environ['USE_PYGEOS'] = '0' # To supress a warning from geopandas
import copy
import json
import wandb
import torch
import numpy as np
import pandas as pd
from utils import *
from models import MLP
from datetime import datetime
from metrics import get_metrics
from tqdm import tqdm
from models import STNet
from torchvision.transforms import Compose, RandomApply, RandomHorizontalFlip, RandomRotation, RandomVerticalFlip, Normalize
# Get parser and parse arguments
parser = get_main_parser()
# Add new arguments
parser.add_argument('--model_directory', type=str, default='None', help='Model directory')
args = parser.parse_args()
args_dict = vars(args)
real_exp_name = args.model_directory.split('/')[-1]
args.exp_name = real_exp_name
# Get save path and create it in case it is necessary
save_path = args.model_directory
# Set manual seeds and get cuda
seed_everything(17)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# Get dataset from the values defined in args
dataset = get_dataset_from_args(args=args)
# Get dataloaders
train_loader, val_loader, test_loader = dataset.get_pretrain_dataloaders(
layer = args.prediction_layer,
batch_size = args.batch_size,
shuffle = False,
use_cuda = use_cuda
)
# Define transformations for the patches
train_transforms = Compose([Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
RandomHorizontalFlip(p=0.5),
RandomVerticalFlip(p=0.5),
RandomApply([RandomRotation((90, 90))], p=0.5)])
if args.average_test:
test_transforms = Compose([Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), EightSymmetry()])
else:
test_transforms = Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# Declare model
model = STNet(args.img_backbone, args.img_use_pretrained, dataset.adata.n_vars).to(device)
model = model.to(device)
# Print number of parameters
print(f'Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}')
criterion = torch.nn.MSELoss()
# Load model from file
model.load_state_dict(torch.load(os.path.join(save_path, 'best_model.pt')))
model.eval()
# Get predictions
if test_loader is not None:
metrics, output = test_simple_and_save_output(model, test_loader, criterion, test_transforms)
aux_adata = dataset.adata[dataset.adata.obs.split == 'test']
# order = dataset.adata.obs[dataset.adata.obs.split == 'test'].index
else:
metrics, output = test_simple_and_save_output(model, val_loader, criterion, test_transforms)
aux_adata = dataset.adata[dataset.adata.obs.split == 'val']
# order = dataset.adata.obs[dataset.adata.obs.split == 'val'].index
breakpoint()
# Get the unique slide names in the prediction adata and chose the first one
p_slide = aux_adata.obs.slide_id.unique()[-1]
# Get that slide from the global adata
slide_adata = dataset.adata[dataset.adata.obs['slide_id'] == p_slide].copy()
# Modify the uns dictionary to include only the information of the slide
slide_adata.uns['spatial'] = {p_slide: dataset.adata.uns['spatial'][p_slide]}
# Update the slide adata with the predictions and labels
slide_adata.layers['predictions'] = tensor_2_np(preds)
slide_adata.layers['labels'] = tensor_2_np(labels)
# Compute list of PCC values
centered_gt_mat = labels - labels.mean(dim=0)
centered_pred_mat = preds - preds.mean(dim=0)
# Compute pearson correlation with cosine similarity
pcc = torch.nn.functional.cosine_similarity(centered_gt_mat, centered_pred_mat, dim=0)
pcc_np = tensor_2_np(pcc)
# Get a pandas dataframe with the results
results_pcc = pd.DataFrame(
data = pcc_np,
index = dataset.adata.var_names,
columns = ['PCC']
)
# Get best and worst predictions
best_genes = results_pcc.nlargest(2, 'PCC').index.tolist()
worst_genes = results_pcc.nsmallest(2, 'PCC').index.tolist()
# List of plotting genes
plotting_genes = best_genes + worst_genes
plotting_pearson = results_pcc['PCC'][plotting_genes].tolist()
diameter = int(slide_adata.uns['spatial'][p_slide]['scalefactors']['spot_diameter_fullres'])
# Get global image limit coordinates
x_min, y_min = slide_adata.obsm['spatial'].min(axis=0) - 4*diameter
x_max, y_max = slide_adata.obsm['spatial'].max(axis=0) + 4*diameter
# Make figure
fig, ax = plt.subplots(nrows=2, ncols=4)
fig.set_size_inches(14, 6.5)
# Cycle plotting
for i in range(len(plotting_genes)):
# Define title color
tit_color = 'k' if i<2 else 'k'
# Define the normalization to have the same color range in groundtruth and prediction
gt_min, gt_max = slide_adata[:, [plotting_genes[i]]].layers['labels'].min(), slide_adata[:, [plotting_genes[i]]].layers['labels'].max()
pred_min, pred_max = slide_adata[:, [plotting_genes[i]]].layers['predictions'].min(), slide_adata[:, [plotting_genes[i]]].layers['predictions'].max()
vmin, vmax = min([gt_min, pred_min]), max([gt_max, pred_max])
norm = colors.Normalize(vmin=vmin, vmax=vmax)
# Plot the groundtruth
# sq.pl.spatial_scatter(slide_adata, color=[plotting_genes[i]], ax=ax[0,i], layer='labels', norm=norm, cmap='jet', crop_coord=(x_min, y_min, x_max, y_max), frameon=True)
sq.pl.spatial_scatter(slide_adata, color=[plotting_genes[i]], ax=ax[0,i], layer='labels', norm=norm, cmap='jet', img=None, frameon=True, size=1.5)
ax[0,i].set_title(f'{plotting_genes[i]}', color=tit_color)
# Plot the prediction
# sq.pl.spatial_scatter(slide_adata, color=[plotting_genes[i]], ax=ax[1,i], layer='predictions', norm=norm, cmap='jet', crop_coord=(x_min, y_min, x_max, y_max), frameon=True)
sq.pl.spatial_scatter(slide_adata, color=[plotting_genes[i]], ax=ax[1,i], layer='predictions', norm=norm, cmap='jet', img=None, frameon=True, size=1.5)
ax[1,i].set_title(f'PCC-Gene $= {round(plotting_pearson[i],3)}$', color=tit_color)
ax[0,i].spines[['right', 'top','left','bottom']].set_visible(False)
ax[1,i].spines[['right', 'top','left','bottom']].set_visible(False)
# Format figure
for axis in ax.flatten():
axis.set_xlabel('')
axis.set_ylabel('')
ax[0,0].set_ylabel('Ground-truth', fontsize=15)
ax[1,0].set_ylabel('Prediction', fontsize=15)
# fig.suptitle('Best 2 (left) and Worst 2 (right) Predicted Genes', fontsize=20)
fig.tight_layout()
# Save plot
fig.savefig(os.path.join(save_path, 'best_worst_predictions.png'), dpi=300)
plt.close(fig)
# Plot histogram of the results pcc dataframe
fig, ax = plt.subplots()
results_pcc.hist(bins=50, color='#CC99FF', ax=ax)
ax.grid(False)
ax.set_title('Pearson Correlation for all Genes')
ax.set_xlabel('PCC-Gene')
ax.set_ylabel('# Genes')
ax.spines[['right', 'top']].set_visible(False)
plt.savefig(os.path.join(save_path, 'pcc_gene_histogram.png'), dpi=300)
plt.close()