-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise-sheet-12.Rmd
227 lines (129 loc) · 4.2 KB
/
exercise-sheet-12.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
title: "Exercise sheet 12: Quartet Tree Puzzling"
---
---------------------------------
# Exercise 1 - Quartet Tree Basics
### 1a)
How many possible quartet trees can you produce with six taxa of any specific topology?
#### {.tabset }
##### Hide
##### Formula
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="20%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise1-a-formula.svg")
```
:::
::::
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise1-a-solution.svg")
```
:::
::::
#### {-}
### 1b)
What does a set of quartet trees tell you, in a biological sense?
#### {.tabset }
##### Hide
##### Formula
- [ ] It tells you which of the quartet trees are likelier than others.
- [ ] It tells you which of the taxa are closer related than others.
- [ ] It tells you the exact distance between each set of four taxa.
##### Solution
- [ ] It tells you which of the quartet trees are likelier than others.
- [x] It tells you which of the taxa are closer related than others.
- [ ] It tells you the exact distance between each set of four taxa.
#### {-}
# Exercise 2 - Quartet Tree Reconstruction
You are given a set of quartet trees and an initial topology. You want to include a new taxa P. Where does the P belong to? (We are only using five quartet trees, but there are more possible as you determined in exercise 1 a.)
Quartet Trees:
$N_1(P,Y|Q,W)$ \
$N_2(X,P|Z,W)$ \
$N_3(X,Z|P,W)$ \
$N_4(P,Y|Z,Q)$ \
$N_5(X,Z|Q,P)$ \
Initial Topology:
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-topology.svg")
```
:::
::::
The letters a-g denote the edges in the topology and represent the **violation counter.**
### 2a)
Add **$N_1(P,Y|Q,W)$** to the initial topology. How does the violation counter look after adding $N_1$?
#### {.tabset }
##### Hide
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-a-solution.svg")
```
:::
::::
#### {-}
### 2b)
Add **$N_2(X,P|Z,W)$** to the initial topology. How does the violation counter look after adding $N_2$?
#### {.tabset }
##### Hide
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-b-solution.svg")
```
:::
::::
#### {-}
### 2c)
Add **$N_3(X,Z|P,W)$** to the initial topology. How does the violation counter look after adding $N_3$?
#### {.tabset }
##### Hide
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-c-solution.svg")
```
:::
::::
#### {-}
### 2d)
Add **$N_4(P,Y|Z,Q)$** to the initial topology. How does the violation counter look after adding $N_4$?
#### {.tabset }
##### Hide
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-d-solution.svg")
```
:::
::::
#### {-}
### 2e)
Add **$N_5(X,Z|Q,P)$** to the initial topology. How does the violation counter look after adding $N_5$?
#### {.tabset }
##### Hide
##### Solution
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="80%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-12/sheet12-exercise2-e-solution.svg")
```
:::
::::
#### {-}
### 2f)
To which edge will taxon $P$ be attributed, after adding quartet trees $N_1$ to $N_5$. What is the closest taxon to the newly added taxon $P$?
#### {.tabset }
##### Hide
##### Solution
Edge - "C" \
Taxon - "Y"
#### {-}