-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCRISPRcasIdentifier.py
436 lines (334 loc) · 20.5 KB
/
CRISPRcasIdentifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""
CRISPRcasIdentifier
Copyright (C) 2020 Victor Alexandre Padilha <victorpadilha@usp.br>,
Omer Salem Alkhnbashi <alkhanbo@informatik.uni-freiburg.de>,
Shiraz Ali Shah <shiraz.shah@dbac.dk>,
André Carlos Ponce de Leon Ferreira de Carvalho <andre@icmc.usp.br>,
Rolf Backofen <backofen@informatik.uni-freiburg.de>
This file is part of CRISPRcasIdentifier.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import os, tarfile, glob, re
import subprocess as sp
import joblib
import numpy as np
import pandas as pd
import itertools
from pathlib import Path
from collections import defaultdict
# Project imports
from prodigal import prodigal
from hmmsearch import hmmsearch
from cas import CAS_SYNONYM_LIST, CORE, CAS_PATTERN
REGRESSORS = {'CART' : 'DecisionTreeRegressor', 'ERT' : 'ExtraTreesRegressor', 'SVM' : 'SVR'}
CLASSIFIERS = {'CART' : 'DecisionTreeClassifier', 'ERT' : 'ExtraTreesClassifier', 'SVM' : 'SVC'}
CLASSIFIERS_INV = {v : k for k, v in CLASSIFIERS.items()}
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
HMM_DIR = BASE_DIR + '/HMM_sets'
MODELS_DIR = BASE_DIR + '/trained_models'
MODELS_TAR_GZ = BASE_DIR + '/trained_models.tar.gz'
HMM_TAR_GZ = BASE_DIR + '/HMM_sets.tar.gz'
HMMSEARCH = 'hmmsearch'
PRODIGAL = 'prodigal'
MAX_N_MISS = 2
def cmd_exists(cmd):
if sp.call(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE) != 0:
raise FileNotFoundError(f'{cmd} not found in PATH')
def to_list(s):
if isinstance(s, str):
return [s]
return s
def extract_targz(targz_file_path):
if not os.path.exists(targz_file_path):
raise ValueError(f'{targz_file_path} file not found. You should download it from our Google Drive. See README.md for details.')
else:
print('Extracting', targz_file_path)
with tarfile.open(targz_file_path, 'r:gz') as tar:
tar.extractall()
def parse_protein_id_from_dna(line):
id_first_part, start, end, strand, id_second_part = line.split('#')
id_first_part = id_first_part.replace('>', '').strip()
start = int(start.strip())
end = int(end.strip())
strand = int(strand)
id_second_part = id_second_part.strip().split(';')[0]
id_ = id_first_part + '_' + id_second_part
return id_, start, end, strand
def build_initial_dataframe(fasta_file, sequence_type):
data = defaultdict(list)
protein_ids = []
with open(fasta_file, 'r') as f:
for line in f:
if line.startswith('>'):
if sequence_type == 'protein':
id_ = line.strip().replace('>', '').split()[0]
else:
id_, start, end, strand = parse_protein_id_from_dna(line)
if id_ not in protein_ids:
protein_ids.append(id_)
if sequence_type == 'dna':
data['start'].append(start)
data['end'].append(end)
data['strand'].append(strand)
return pd.DataFrame(data, index=protein_ids)
def annotate_proteins(initial_protein_df, hmmsearch_output_dir, hmm_sets, sequence_type, cassette_output_dir=None, save_csv=False):
annotated_protein_dataframes = {}
for hmm in hmm_sets:
protein_df = initial_protein_df.copy()
annotated_protein_dataframes[hmm] = add_bitscores(os.path.join(hmmsearch_output_dir, hmm), protein_df, sequence_type)
if save_csv:
annotated_protein_dataframes[hmm].to_csv(os.path.join(cassette_output_dir, hmm + '_annotated_proteins.csv'))
return annotated_protein_dataframes
def add_bitscores(hmm_output_dir, protein_df, sequence_type):
protein_df = protein_df.assign(bitscore=np.repeat(-1.0, protein_df.shape[0]))
protein_df = protein_df.assign(annotation=np.repeat('unknown', protein_df.shape[0]))
hmm_output_files = glob.glob(hmm_output_dir + '/*.tab')
for file_path in hmm_output_files:
_, tab_file = file_path.rsplit('/', 1)
annotation = tab_file.split('_')[0].split('-')[0].lower()
annotation = re.match(CAS_PATTERN, annotation)
if annotation:
annotation = annotation.group()
if annotation in CAS_SYNONYM_LIST:
annotation = CAS_SYNONYM_LIST[annotation]
with open(file_path, 'r') as f:
for line in f:
if not line.startswith('#'):
hmm_result = line.strip().split()
id_ = hmm_result[0]
bitscore = float(hmm_result[5])
if sequence_type == 'dna':
id_second_part = hmm_result[-1].strip().split(';')[0]
id_ += '_' + id_second_part
if bitscore > protein_df.at[id_, 'bitscore'] and bitscore > 0.0:
protein_df.at[id_, 'bitscore'] = bitscore
protein_df.at[id_, 'annotation'] = annotation
return protein_df
def build_cassettes(annotated_protein_dataframes, sequence_type, max_gap=2, min_proteins=2, max_nt_diff=500, cassette_output_dir=None, save_csv=False):
cassette_dataframes = {}
for hmm, protein_df in annotated_protein_dataframes.items():
if sequence_type == 'protein':
cassette_ids = np.ones(protein_df.shape[0], dtype=np.int)
cassette_df = protein_df
else:
cassettes = []
indices_cassette = []
gap = 0
cas_count = 0
for i, (idx, row) in enumerate(protein_df.iterrows()):
nt_diff = row['start'] - protein_df.iloc[i - 1]['end'] if i > 0 else 0
if ((row['annotation'] != 'unknown' and len(indices_cassette) == 0) or \
(row['annotation'] != 'unknown' and nt_diff <= max_nt_diff)) and \
gap <= max_gap:
indices_cassette.append(idx)
gap = 0
cas_count += 1
elif i > 0 and len(indices_cassette) > 0 and row['annotation'] == 'unknown' and nt_diff <= max_nt_diff and gap < max_gap:
indices_cassette.append(idx)
gap += 1
elif len(indices_cassette) > 0 and cas_count >= min_proteins:
for idx2filter in list(reversed(indices_cassette)):
if protein_df.at[idx2filter, 'annotation'] == 'unknown':
indices_cassette.pop()
else:
break
protein_df_cassette = protein_df.loc[indices_cassette]
unique_cassette_proteins = set(protein_df_cassette[protein_df_cassette['annotation'] != 'unknown']['annotation'])
if len(unique_cassette_proteins) > 1 and len(unique_cassette_proteins.intersection(CORE)) >= 1:
cassettes.append(indices_cassette)
gap = 0
cas_count = 0
indices_cassette = []
else:
gap = 0
cas_count = 0
indices_cassette = []
cassette_ids = [[i + 1] * len(c) for i, c in enumerate(cassettes)]
cassette_ids = list(itertools.chain.from_iterable(cassette_ids))
cassettes = list(itertools.chain.from_iterable(cassettes))
cassette_df = protein_df.loc[cassettes]
cassette_df = cassette_df.assign(cassette_id=cassette_ids)
if save_csv:
cassette_df.to_csv(os.path.join(cassette_output_dir, hmm + '_cassettes.csv'))
cassette_dataframes[hmm] = cassette_df.assign(cassette_id=cassette_ids)
return cassette_dataframes
def convert_cassette_dataframes_to_numpy_arrays(cassette_dataframes, models_dir, cassette_output_dir):
hmm_cassette_arrays = {}
hmm_features = {}
hmm_missings = {}
for hmm, cassette_df in cassette_dataframes.items():
features = joblib.load(os.path.join(models_dir, hmm + '_features.joblib'))
feature_to_idx = dict(zip(features, np.arange(len(features))))
n_missings = []
cassette_arrays = []
for idx, cassette in cassette_df.groupby(by='cassette_id'):
array = np.zeros(len(features))
n_miss = (cassette['annotation'] == 'unknown').sum()
for _, row in cassette.iterrows():
if row['annotation'] != 'unknown' and row['annotation'] in feature_to_idx:
j = feature_to_idx[row['annotation']]
array[j] = max(array[j], row['bitscore'])
cassette_arrays.append(array)
n_missings.append(n_miss)
if cassette_arrays:
scaler = joblib.load(os.path.join(models_dir, hmm + '_scaler.joblib'))
cassette_arrays = np.array(cassette_arrays)
cassette_arrays = scaler.transform(cassette_arrays)
cassette_header = ' '.join(features)
cassette_file_path = os.path.join(cassette_output_dir, hmm + '_cassette_arrays.txt')
print('Saving cassette(s) to', cassette_file_path)
np.savetxt(os.path.join(cassette_output_dir, hmm + '_cassette_arrays.txt'), cassette_arrays, header=cassette_header)
hmm_cassette_arrays[hmm] = cassette_arrays
hmm_features[hmm] = features
hmm_missings[hmm] = n_missings
else:
print('CRISPRcasIdentifier could not find enough hits to build one or more cassettes for the input file and ', hmm, '.', sep='')
return hmm_features, hmm_cassette_arrays, hmm_missings
def predict_missings(models_dir, regressor, hmm_features, hmm_cassettes, hmm_missings):
filled_cassettes = defaultdict(list)
reg_name = REGRESSORS[regressor]
print('\n' + '-' * 50)
for hmm in sorted(hmm_missings):
for id_, n_miss in enumerate(hmm_missings[hmm]):
cassette = np.copy(hmm_cassettes[hmm][id_])
if np.any(cassette > 0.0):
if n_miss == 0:
print('There are no unlabeled proteins for cassette #', id_ + 1, 'and', hmm)
elif n_miss == 1:
print('There is', n_miss, 'unlabeled protein for cassette #', id_ + 1, 'and', hmm)
else:
print('There are', n_miss, 'unlabeled proteins for cassette #', id_ + 1, 'and', hmm)
if n_miss > MAX_N_MISS:
print('More than ' + str(MAX_N_MISS) + ' missing proteins. Regression predictions will likely be weak.')
if n_miss:
zeros_idx = np.where(cassette == 0.0)[0]
features = hmm_features[hmm]
features_to_test = features[zeros_idx]
predictions = []
for j, f in zip(zeros_idx, features_to_test):
reg = joblib.load(os.path.join(models_dir, hmm + '_' + reg_name + '_' + f + '.joblib'))
cassette_f = np.delete(cassette, j)
pred = reg.predict(np.expand_dims(cassette_f, axis=0))[0]
predictions.append((j, f, pred))
predictions = sorted(predictions, key=lambda x : -x[-1])
n_miss = min(n_miss, len(predictions))
for i in range(n_miss):
j, f, pred = predictions[i]
if pred > 0.0:
print('{0} missing bitscore prediction for cassette #{1}, {2} and {3} ({4}/{5}): {6:.6f}'.format(regressor, id_ + 1, hmm, f, i + 1, n_miss, pred))
cassette[j] = pred # because cassette is a 2d 1 x m array
filled_cassettes[hmm].append(cassette)
else:
print('Cassette #' + str(id_ + 1) + ' is either empty or composed only by unknown proteins for ' + hmm + '. '
'Regressors are not able to predict anything.')
print('-' * 50)
return filled_cassettes
def classify(models_dir, regressor_name, classifiers, hmm_cassettes, return_probability, hmm_missings, output_defaultdict):
for hmm in sorted(hmm_cassettes):
cassette = hmm_cassettes[hmm]
encoder = joblib.load(os.path.join(models_dir, hmm + '_encoder.joblib'))
if regressor_name:
print('Predictions for', hmm, 'and', regressor_name, 'regressor\n')
else:
print('Predictions for', hmm, 'without regression\n')
for ci, casc in enumerate(cassette):
if np.any(casc > 0.0):
if not regressor_name and hmm_missings[hmm][ci] > MAX_N_MISS:
print('More than ' + str(MAX_N_MISS) + ' missing proteins. Classification predictions will likely be weak.')
casc = np.expand_dims(casc, axis=0)
for clf_name in classifiers:
# saving output information ------------------------
output_defaultdict['HMM'].append(hmm)
output_defaultdict['cassette_id'].append(ci + 1)
output_defaultdict['classifier'].append(CLASSIFIERS_INV[clf_name])
if regressor_name:
output_defaultdict['regressor'].append(regressor_name)
# --------------------------------------------------
clf = joblib.load(os.path.join(models_dir, hmm + '_' + clf_name + '.joblib'))
if return_probability:
pred = clf.predict_proba(casc)
pred_class_idx = np.where(pred > 0.0)
pred_class_names = encoder.inverse_transform(pred_class_idx[1])
pred_probs = pred[pred_class_idx]
sorted_idx = np.argsort(-pred_probs)
prob_str = ', '.join('{0} ({1:.3f})'.format(name, prob) for name, prob in zip(pred_class_names[sorted_idx], pred_probs[sorted_idx]))
print('Cassette #{} -- {} classifier: {}'.format(ci + 1, CLASSIFIERS_INV[clf_name], prob_str))
pred_label = list(zip(pred_class_names[sorted_idx], pred_probs[sorted_idx]))
else:
pred = clf.predict(casc)
pred_label = encoder.inverse_transform(pred)[0]
print('Cassette #{} -- {} classifier: {}'.format(ci + 1, CLASSIFIERS_INV[clf_name], pred_label))
output_defaultdict['predicted_label'].append(pred_label)
print()
else:
print('Cassette #' + str(ci + 1) + ' is either empty or composed only by unknown proteins for ' + hmm + '. '
'Classifiers are not able to predict anything.')
print('-' * 50)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('-f', '--fasta', dest='fasta_file', help='Fasta file path (it can be either protein or DNA, see -st and -sc for details).', metavar='/path/to/file.fa')
parser.add_argument('-r', '--regressors', nargs='+', dest='regressors', help='List of regressors. Available options: CART, ERT or SVM (default: ERT).', default='ERT', metavar='reg1 reg2', choices=['CART', 'ERT', 'SVM'])
parser.add_argument('-c', '--classifiers', nargs='+', dest='classifiers', help='List of classifiers. Available options: CART, ERT or SVM (default: ERT).', default='ERT', metavar='clf1 clf2', choices=['CART', 'ERT', 'SVM'])
parser.add_argument('-p', '--class-probabilities', dest='probability', action='store_true', help='Whether to return class probabilities.')
parser.add_argument('-s', '--hmm-sets', nargs='+', dest='hmm_sets', help='List of HMM sets. Available options: HMM1 to HMM5 and HMM2019 (default: HMM2019).', metavar='HMMi HMMj', default='HMM2019', choices=['HMM1', 'HMM2', 'HMM3', 'HMM4', 'HMM5', 'HMM2019'])
parser.add_argument('-ho', '--hmmsearch-output-dir', nargs='?', dest='hmmsearch_output_dir', help='hmmsearch output folder (default: ./output/hmmsearch).', default='./output/hmmsearch')
parser.add_argument('-co', '--cassette-output-dir', nargs='?', dest='cassette_output_dir', help='cassette output folder (default: ./output/cassette).', default='./output/cassette')
parser.add_argument('-st', '--sequence-type', nargs='?', dest='sequence_type', default='protein', help='Sequence type. Available options: dna or protein (default: protein).', metavar='seq_type', choices=['dna', 'protein'])
parser.add_argument('-sc', '--sequence-completeness', nargs='?', dest='sequence_completeness', help='Sequence completeness (used only if sequence type is dna). Available options: complete or partial (default: complete).', default='complete', metavar='seq_comp', choices=['complete', 'partial'])
parser.add_argument('-m', '--mode', nargs='?', dest='run_mode', help='Run mode. Available options: classification, regression or combined (default: combined).', default='combined', metavar='mode', choices=['classification', 'regression', 'combined'])
parser.add_argument('-o', '--output-file', nargs='?', dest='output_file', help='Where to store predictions (default: ./output/predictions.csv).', default='./output/predictions.csv')
args = parser.parse_args()
args.regressors = to_list(args.regressors)
args.classifiers = to_list(args.classifiers)
args.hmm_sets = to_list(args.hmm_sets)
if not os.path.exists(args.fasta_file):
raise FileNotFoundError('No such file {}'.format(args.fasta_file))
if not os.path.exists(HMM_DIR):
extract_targz(HMM_TAR_GZ)
if not os.path.exists(MODELS_DIR):
extract_targz(MODELS_TAR_GZ)
if not os.path.exists(args.cassette_output_dir):
Path(args.cassette_output_dir).mkdir(parents=True, exist_ok=True)
if not os.path.exists(args.hmmsearch_output_dir):
Path(args.hmmsearch_output_dir).mkdir(parents=True, exist_ok=True)
if args.sequence_type == 'dna':
print('Running prodigal on DNA sequences')
cmd_exists(PRODIGAL + ' -h')
args.fasta_file = prodigal(PRODIGAL, args.fasta_file, args.sequence_completeness)
print('Running hmmsearch (log and outputs stored in {})'.format(args.hmmsearch_output_dir))
cmd_exists(HMMSEARCH + ' -h')
hmmsearch(HMMSEARCH, args.fasta_file, HMM_DIR, args.hmm_sets, args.hmmsearch_output_dir)
print('Annotating proteins')
protein_df = build_initial_dataframe(args.fasta_file, args.sequence_type)
annotated_protein_dfs = annotate_proteins(protein_df, args.hmmsearch_output_dir, args.hmm_sets, args.sequence_type, args.cassette_output_dir, save_csv=True)
print('Building cassettes')
hmm_cassettes = build_cassettes(annotated_protein_dfs, args.sequence_type, cassette_output_dir=args.cassette_output_dir, save_csv=True)
hmm_features, hmm_cassettes, hmm_missings = convert_cassette_dataframes_to_numpy_arrays(hmm_cassettes, MODELS_DIR, args.cassette_output_dir)
classifiers = [CLASSIFIERS[clf] for clf in args.classifiers]
output_defaultdict = defaultdict(list)
if hmm_cassettes:
if args.run_mode == 'classification':
print('Loading classifiers and running classification')
classify(MODELS_DIR, '', classifiers, hmm_cassettes, args.probability, hmm_missings, output_defaultdict)
else:
for reg in args.regressors:
hmm_cassettes_reg = predict_missings(MODELS_DIR, reg, hmm_features, hmm_cassettes, hmm_missings)
if args.run_mode == 'combined':
print('Loading classifiers and running classification')
classify(MODELS_DIR, reg, classifiers, hmm_cassettes_reg, args.probability, hmm_missings, output_defaultdict)
if output_defaultdict:
print('Saving class predictions to', args.output_file)
output_df = pd.DataFrame(output_defaultdict)
output_df.to_csv(args.output_file, index=False)
else:
print('No predictions were made.')