forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
230 lines (179 loc) · 8.67 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
MONTHS = ['january', 'february', 'march', 'april', 'may', 'june']
def no_city_found(city):
return CITY_DATA.get(city) == None
def no_month_data(month):
return month not in MONTHS and month != 'all'
def not_day_of_week(day):
return day not in ['sunday','monday','tuesday', 'wednesday', 'thursday', 'friday', 'saturday'] and day != 'all'
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input('Please enter name of city to analyze: ').lower()
while no_city_found(city):
print('No data exist for the city you entered! Please try again. \n')
city = input('Please enter name of city to analyze: ').lower()
# TO DO: get user input for month (all, january, february, ... , june)
month = input('Please name of month to filter by. Enter "all" to apply no month filter: ').lower()
while no_month_data(month):
print('No data exist for the month you entered! Please try again. \n')
month = input('Please type name of month to filter by. Enter "all" to apply no month filter: ').lower()
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
day = input('Please day of week to filter by. Enter "all" to apply no day filter: ').lower()
while not_day_of_week(day):
print('{} is not day of the week! Please try again. \n'.format(day))
day = input('Please type day of week to filter by. Enter "all" to apply no day filter: ').lower()
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df = pd.read_csv(CITY_DATA[city.lower()])
# Start Time column converted to datetime object
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
df['hour'] = df['Start Time'].dt.hour
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
month = MONTHS.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
common_month = df['month'].mode()[0]
print('The most common month is: {}'.format(common_month))
# TO DO: display the most common day of week
common_day_of_week = df['day_of_week'].mode()[0]
print('The most common day of week is: {}'.format(common_day_of_week))
# TO DO: display the most common start hour
common_start_hr = df['hour'].mode()[0]
print('The most common start hour is: {}'.format(common_start_hr))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
popular_start_station = df['Start Station'].mode()[0]
print('Most commonly used start station: ', popular_start_station)
# TO DO: display most commonly used end station
popular_end_station = df['End Station'].mode()[0]
print('Most commonly used end station: ', popular_end_station)
# TO DO: display most frequent combination of start station and end station trip
#popular_start_and_end_station = df.groupby(['Start Station']).count().max()
popular_start_and_end_station = df.groupby(['Start Station','End Station']).size().idxmax()
print('Most popular start and end station combination: ', popular_start_and_end_station)
#print(df[['Start Station','End Station']].max())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
total_travel_time = df['Trip Duration'].sum()
print('\nTotal travel time: ', total_travel_time)
# TO DO: display mean travel time
mean_travel_time = df['Trip Duration'].mean()
print('\nMean travel time: ', mean_travel_time)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
user_type_count = df['User Type'].value_counts()
print('\nCount of user types \n {}'.format(user_type_count))
try:
# TO DO: Display counts of gender
gender_count = df['Gender'].value_counts()
print('\nCount of gender \n {}'.format(gender_count))
# TO DO: Display earliest, most recent, and most common year of birth
earliest_yob = df['Birth Year'].min()
print('\nEarliest year of birth: ', earliest_yob)
most_recent_yob = df['Birth Year'].max()
print('\nMost recent year of birth: ', most_recent_yob)
popular_yob = df['Birth Year'].mode()[0]
print('\nMost popular year of birth: ', popular_yob)
except KeyError as e:
print('KeyError: Key does not exist in the selected dataset. ', e)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def get_user_input(size):
""" Prompts user to enter number of rows to display """
user_input = input('Enter number of rows to display. Number should not be greater than {}: '.format(size))
while not user_input.isdigit() or int(user_input) > size:
print('Please you need to enter a number less than or equal to {} to continue. \n'.format(size))
user_input = input('Enter number of rows to display: Number should not be greater than {}: '.format(size))
return int(user_input)
def extract_rows_frame_data(df, start_index, end_index):
if end_index < len(df):
no_of_rows = 0#variable initialized
#User is invited to enter number of rows to display after the initial display
if start_index > 0 :
no_of_rows = get_user_input(len(df)-start_index)# Number of rows entered should not exceed remaining rows in dataframe
end_index+=no_of_rows
print('\nCalculating User Stats...\n')
start_time = time.time()
print(df.iloc[start_index:end_index])
start_index = end_index
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
else:
print('You have reached end of the dataset! \n')
break
def display_raw_data(df):
"""Displays raw data on bikeshare upon user request."""
start_index = 0
end_index = 5
while True:
show_data = input('\nDo you wish to view more data on bikeshare? Enter yes/no. \n').lower()
if show_data != 'yes':
break
extract_rows_frame_data(df, start_index,end_index)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
display_raw_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()