Skip to content

Latest commit

 

History

History
149 lines (111 loc) · 3.74 KB

README.md

File metadata and controls

149 lines (111 loc) · 3.74 KB

Robust Fine-tuning of Zero-shot Models via Variance Reduction

This repository contains code for the Variance Reduction Fine-tuning (VRF).

TLDR: We propose a sample-wise ensembling technique for fine-tuning zero-shot models that can simultaneously attain the best ID and OOD accuracy.

Install dependencies

conda env create --file environment.yml
conda activate vrf

Add directory to PYTHONPATH:

cd VRF.public
export PYTHONPATH="$PYTHONPATH:$PWD"

Prepare Datasets

Prepare ImageNet

  • (Skip if already downloaded) Download the dataset from the official website and extract to ${ANY_PATH_YOU_PREFER}/imagenet/images.

  • Create data directory and create symbolic links.

export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir imagenet
ln -s ${ANY_PATH_YOU_PREFER}/imagenet/images imagenet

Prepare ImageNet-V2

  • (Skip if already downloaded) Download the dataset:

    cd ${ANY_PATH_YOU_PREFER}
    wget https://s3-us-west-2.amazonaws.com/imagenetv2public/imagenetv2-matched-frequency.tar.gz
    tar -xvf imagenetv2-matched-frequency.tar.gz
    rm imagenetv2-matched-frequency.tar.gz
  • Create data directory and create symbolic links.

export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir ImageNetV2-matched-frequency/
ln -s ${ANY_PATH_YOU_PREFER}/ImageNetV2-matched-frequency/ ImageNetV2-matched-frequency/

Prepare ImageNet Sketch

  • (Skip if already downloaded) Download the dataset from Google Drive

  • Create data directory and create symbolict links.

export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir sketch/
ln -s ${ANY_PATH_YOU_PREFER}/imagenet-sketch/images/ sketch/

Prepare ImageNet A

  • (Skip if already downloaded):
wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar
tar -xvzf imagenet-a.tar
rm imagenet-a.tar
  • Create data directory and create symbolict links.
export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir imagenet-a/
ln -s ${ANY_PATH_YOU_PREFER}/imagenet-adversarial/imagenet-a imagenet-a/

Prepare ImageNet R

  • (Skip if already downloaded):
wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar
tar -xvzf imagenet-r.tar
rm imagenet-r.tar
  • Create data directory and create symbolict links.
export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir imagenet-r 
ln -s ${ANY_PATH_YOU_PREFER}/imagenet-rendition/imagenet-r/ imagenet-r/

Prepare ObjectNet

  • (Skip if already downloaded):
wget https://objectnet.dev/downloads/objectnet-1.0.zip
unzip objectnet-1.0.zip
rm objectnet-1.0.zip
  • Create data directory and create symbolict links.
export DATA_LOCATION=~/data
cd $DATA_LOCATION
mkdir objectnet-1.0
ln -s ${ANY_PATH_YOU_PREFER}/data3/data2/objectnet-1.0/ objectnet-1.0

Download pre-trained models

  • Download the available zero-shot and fine-tuned models (CLIP ViT-B/16) from WiSE-FT to the directory ./models/vit-16/. The directory structure should look like:
models/
   |–– vit-16/ 
      |–– zeroshot.pt 
      |–– checkpoint_10.pt

Run baselines

  • Compare the performance using CLIP ViT-B/16 of (1) zero-shot, (2) fine-tuned (E2E-FT), (3) WSE (WiSE-FT), and (4) OSE.
python src/baselines.py --load=models/vit-16/zeroshot.pt,models/vit-16/checkpoint_10.pt

Run our VRF

  • Step 1: Identification and Step 2: Distance Calculation
python src/knn_distance.py --load=models/vit-16/zeroshot.pt,models/vit-16/checkpoint_10.pt
  • Step 3: Sample-Wise Ensembling
python src/main.py --load=models/vit-16/zeroshot.pt,models/vit-16/checkpoint_10.pt