-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
297 lines (246 loc) · 8.9 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
from matplotlib import pyplot as plt
from time import time
import re
def compute_precision(pred: np.ndarray, true) -> float:
"""
Computes the precision score from the given predicted and true documents.
Attributes
----------
pred: ndarray
The predicted documents.
true: list, ndarray or set
The true documents for the searched query.
Returns
----------
out: float
Precision score.
"""
if type(true) != set:
true = set(true)
true_positives = set(pred).intersection(true)
if len(pred) > 0:
return len(true_positives) / len(pred)
return None
def compute_recall(pred: np.ndarray, true) -> float:
"""
Computes the recall score from the given predicted and true documents.
"""
if type(true) != set:
true = set(true)
true_positives = set(pred).intersection(true)
if len(true) > 0:
return len(true_positives) / len(true)
return None
def compute_e_measure(pred: np.ndarray, true, beta=None) -> float:
"""
Computes the E measure from the given predicted and true documents.
"""
precision_score = compute_precision(pred, true)
recall_score = compute_recall(pred, true)
if beta is None:
try:
beta = precision_score / recall_score
except:
beta=np.inf
try:
return 1 - precision_score * recall_score * (1 + beta ** 2) / (recall_score + precision_score * beta ** 2)
except:
return 1
def compute_f_measure(pred: np.ndarray, true, beta=1) -> float:
"""
Computes the F measure from the given predicted and true documents.
"""
return 1 - compute_e_measure(pred, true, beta)
def compute_r_measure(pred: np.ndarray, true, max_rank=None) -> float:
"""
Computes the R-measure (precision at rank R) from the given predicted and true documents.
Attributes
----------
pred: ndarray
The predicted documents, ranked in order of relevance.
true: list, ndarray or set
The true documents for the searched query.
max_rank: int
Maximum rank to consider when computing the precision. If None, max_rank is set to the number of relevant
documents (i.e. len(true)).
Returns
----------
out: float
R-measure.
"""
if max_rank is None:
max_rank = len(true)
elif max_rank > len(pred):
max_rank = len(pred)
return compute_precision(pred[:max_rank], true)
def compute_interpolated_precisions(pred: np.ndarray, true) -> list:
"""
Computes the interpolated precisions score from the given predicted and true documents.
Attributes
----------
pred: ndarray
The predicted documents, ranked in order of relevance.
true: list, ndarray or set
The true documents for the searched query.
Returns
----------
out: list
Interpolated precisions.
"""
precision = []
recall = []
true = set(true) # Faster computation to do it now.
# Compute precision and recall scores by adding documents one by one in order of return.
for k in range(1, len(pred) + 1):
precision.append(compute_precision(pred[:k], true))
recall.append(compute_recall(pred[:k], true))
interpolated_precisions = []
idx_min_recall = 0
# Computes interpolated precisions
for r in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
while idx_min_recall < len(recall) and recall[idx_min_recall] < r:
idx_min_recall += 1
if idx_min_recall == len(recall):
interpolated_precisions.append(0)
else:
interpolated_precisions.append(np.max(precision[idx_min_recall:]))
return interpolated_precisions
def compute_average_precision(pred: np.ndarray, true) -> float:
"""
Computes the average precision score from the given predicted and true documents.
Attributes
----------
pred: ndarray
The predicted documents, ranked in order of relevance.
true: list, ndarray or set
The true documents for the searched query.
Returns
----------
out: float
Average precision score.
"""
return np.sum(compute_interpolated_precisions(pred, true)) / 11
def compute_mean_average_precision(queries_pred: list, queries_true: list) -> float:
"""
Computes the mean average precision score from the given queries.
Attributes
----------
queries_pred: list[ndarray]
The predicted documents, ranked in order of relevance, of each query.
queries_true: list[list], list[ndarray] or list[set]
The true documents of each query.
Returns
----------
out: float
Mean average precision score.
"""
average_precisions = []
for idx_query in range(len(queries_pred)):
average_precisions.append(compute_average_precision(queries_pred[idx_query], queries_true[idx_query]))
return np.mean(average_precisions)
def plot_precision_recall_curve(pred: np.ndarray, true):
"""
Plots the recall-precision curve. Must call plt.show() to show.
"""
recalls = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
interpolated_precisions = compute_interpolated_precisions(pred, true)
# Rearrange lists for a better plot
x = []
y = []
for k in range(11):
if k == 0:
x.append(recalls[k])
y.append(interpolated_precisions[k])
y.append(interpolated_precisions[k])
elif k == 10:
x.append(recalls[k])
x.append(recalls[k])
y.append(interpolated_precisions[k])
else:
x.append(recalls[k])
x.append(recalls[k])
y.append(interpolated_precisions[k])
y.append(interpolated_precisions[k])
plt.figure()
plt.plot(x, y)
plt.xlabel('Precision')
plt.ylabel('Recall')
plt.title('Precision-recall curve')
def read_truth(qrel_path: str, query_path:str=None):
truth = np.loadtxt(qrel_path, dtype=str, delimiter="\n")
query_docs = [[] for i in range(66)]
for row in truth:
row = re.split("\s+", row)
id_query = int(row[0])
id_doc = int(row[1])
query_docs[id_query] +=[id_doc]
if query_path is None:
return query_docs
query_texts = [""] # querys start at 1
raw_file = np.loadtxt(query_path, dtype=str, delimiter="\n")
keep_element = False
for line in raw_file:
if line.startswith(".W"):
keep_element = True
query_texts += [""]
elif line.startswith("."):
keep_element = False
else:
if keep_element:
query_texts[-1] += line + " "
return query_docs, query_texts
def full_query_report(index, query, true_results):
start = time()
docs = index.treat_query(query, show_tree=True)
print("Query treated in {:.1f}s".format(time()-start))
print("Docs found for query : {}".format(query))
print(docs)
print("Docs we should have found :")
print(true_results)
precision = compute_precision(docs, true_results)
recall = compute_recall(docs, true_results)
e_measure = compute_e_measure(docs, true_results)
f_measure = compute_f_measure(docs, true_results)
r_measure = compute_r_measure(docs, true_results)
interpolated_precisions = compute_interpolated_precisions(docs, true_results)
average_precision = compute_average_precision(docs, true_results)
print("precision :\t\t\t{:.2f}".format(precision))
print("recall :\t\t\t{:.2f}".format(recall))
print("e_measure :\t\t\t{:.2f}".format(e_measure))
print("f_measure :\t\t\t{:.2f}".format(f_measure))
print("r_measure :\t\t\t{:.2f}".format(r_measure))
print("interpolated_precisions :\t{}".format(interpolated_precisions))
print("average_precision :\t\t{:.2f}".format(average_precision))
plot_precision_recall_curve(docs, true_results)
plt.show()
def short_query_report(index, id_query, query, true_results):
t = time()
result = index.treat_query(query)
t = time()-t
precision = compute_precision(result, true_results)
recall = compute_recall(result, true_results)
f_measure = compute_f_measure(result, true_results)
report_str = "query {} :\t".format(id_query)
if recall is not None:
report_str += "r : {:.2f}\t".format(recall)
else :
report_str += "r : NaN\t\t"
if precision is not None:
report_str += "p : {:.2f}\t".format(precision)
else :
report_str += "p : NaN\t\t"
if f_measure is not None:
report_str += "f1 : {:.2f}\t".format(f_measure)
else :
report_str += "f1 : NaN\t\t"
report_str += "({:.2f}s)".format(t)
print(report_str)
return result
if __name__ == '__main__':
pred = np.arange(14)
true = [0, 1, 3, 5, 12, 50]
# true = np.array([131,4334,53442,434])
print(compute_mean_average_precision(pred,true))
plot_precision_recall_curve(pred, true)
plt.show()