diff --git a/example/supporting-modules/mp_thompson.f90 b/example/supporting-modules/mp_thompson.f90 index 4de3637ed..2e765471d 100644 --- a/example/supporting-modules/mp_thompson.f90 +++ b/example/supporting-modules/mp_thompson.f90 @@ -23,3780 +23,14 @@ ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ! SOFTWARE. -!>---------------------------------------------------------------------- -!! This subroutine computes the moisture tendencies of water vapor, -!! cloud droplets, rain, cloud ice (pristine), snow, and graupel. -!! -!! Prior to WRFv2.2 this code was based on Reisner et al (1998), but -!! few of those pieces remain. A complete description is now found in -!! Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: -!! Explicit Forecasts of winter precipitation using an improved bulk -!! microphysics scheme. Part II: Implementation of a new snow -!! parameterization. Mon. Wea. Rev., 136, 5095-5115. -!! Prior to WRFv3.1, this code was single-moment rain prediction as -!! described in the reference above, but in v3.1 and higher, the -!! scheme is two-moment rain (predicted rain number concentration). -!! -!! Most importantly, users may wish to modify the prescribed number of -!! cloud droplets (Nt_c; see guidelines mentioned below). Otherwise, -!! users may alter the rain and graupel size distribution parameters -!! to use exponential (Marshal-Palmer) or generalized gamma shape. -!! The snow field assumes a combination of two gamma functions (from -!! Field et al. 2005) and would require significant modifications -!! throughout the entire code to alter its shape as well as accretion -!! rates. Users may also alter the constants used for density of rain, -!! graupel, ice, and snow, but the latter is not constant when using -!! Paul Field's snow distribution and moments methods. Other values -!! users can modify include the constants for mass and/or velocity -!! power law relations and assumed capacitances used in deposition/ -!! sublimation/evaporation/melting. -!! Remaining values should probably be left alone. -!! -!! Modifications for ICAR include OPENMP paralellization and the ability -!! to input many important parameters so they are no longer hard coded -!! -!! @author Greg Thompson, NCAR-RAL, gthompsn@ucar.edu, 303-497-2805 -!! Last modified: 27 Jul 2012 -!! -!!-------------------------------------------------------------------- -!wrft:model_layer:physics -!+---+-----------------------------------------------------------------+ -! MODULE module_mp_thompson -!!! use options_types, only: mp_options_type -!!! commented for compilation outside ICAR -! USE module_wrf_error -! USE module_mp_radar -! USE module_utility, ONLY: WRFU_Clock, WRFU_Alarm -! USE module_domain, ONLY : HISTORY_ALARM, Is_alarm_tstep + ! Adapted from https://github.com/BerkeleyLab/icar IMPLICIT NONE - LOGICAL, PARAMETER, PRIVATE:: iiwarm = .false. - INTEGER, PARAMETER, PRIVATE:: IFDRY = 0 - REAL, PARAMETER, PRIVATE:: T_0 = 273.15 -! REAL, PARAMETER, PRIVATE:: PI = 3.1415926536 !trude added. Note, pi is defined in data_structures, and conflict with definition here. Need to determine what to to about it. - REAL, PARAMETER, PRIVATE:: PI2 = 3.1415926536 !trude added. Note, pi is defined in data_structures, and conflict with definition here. Need to determine what to to about it. - -!..Densities of rain, snow, graupel, and cloud ice. - REAL, PARAMETER, PRIVATE:: rho_w = 1000.0 - REAL, PARAMETER, PRIVATE:: rho_s = 100.0 - ! REAL, PARAMETER, PRIVATE:: rho_g = 500.0 ! trude commented out for changing from parameter to input variable - REAL, PARAMETER, PRIVATE:: rho_i = 890.0 - -!..Prescribed number of cloud droplets. Set according to known data or -!.. roughly 100 per cc (100.E6 m^-3) for Maritime cases and -!.. 300 per cc (300.E6 m^-3) for Continental. Gamma shape parameter, -!.. mu_c, calculated based on Nt_c is important in autoconversion -!.. scheme. -! ++ trude comment out -! REAL, PARAMETER, PRIVATE:: Nt_c = 100.E6 -! -- trude comment out -!..Generalized gamma distributions for rain, graupel and cloud ice. -!.. N(D) = N_0 * D**mu * exp(-lamda*D); mu=0 is exponential. -! REAL, PARAMETER, PRIVATE:: mu_r = 0.0 - REAL, PARAMETER, PRIVATE:: mu_g = 0.0 - REAL, PARAMETER, PRIVATE:: mu_i = 0.0 - REAL, PRIVATE:: mu_c - -!..Sum of two gamma distrib for snow (Field et al. 2005). -!.. N(D) = M2**4/M3**3 * [Kap0*exp(-M2*Lam0*D/M3) -!.. + Kap1*(M2/M3)**mu_s * D**mu_s * exp(-M2*Lam1*D/M3)] -!.. M2 and M3 are the (bm_s)th and (bm_s+1)th moments respectively -!.. calculated as function of ice water content and temperature. - REAL, PARAMETER, PRIVATE:: mu_s = 0.6357 - REAL, PARAMETER, PRIVATE:: Kap0 = 490.6 - REAL, PARAMETER, PRIVATE:: Kap1 = 17.46 - REAL, PARAMETER, PRIVATE:: Lam0 = 20.78 - REAL, PARAMETER, PRIVATE:: Lam1 = 3.29 - -!..Y-intercept parameter for graupel is not constant and depends on -!.. mixing ratio. Also, when mu_g is non-zero, these become equiv -!.. y-intercept for an exponential distrib and proper values are -!.. computed based on same mixing ratio and total number concentration. - REAL, PARAMETER, PRIVATE:: gonv_min = 1.E4 - REAL, PARAMETER, PRIVATE:: gonv_max = 3.E6 - -!..Mass power law relations: mass = am*D**bm -!.. Snow from Field et al. (2005), others assume spherical form. - REAL, PARAMETER, PRIVATE:: am_r = PI2*rho_w/6.0 - REAL, PARAMETER, PRIVATE:: bm_r = 3.0 -! REAL, PARAMETER, PRIVATE:: am_s = 0.069 ! trude commented out for changing from parameter to input variable - REAL, PARAMETER, PRIVATE:: bm_s = 2.0 -! REAL, PARAMETER, PRIVATE:: am_g = PI2*rho_g/6.0 ! trude commented out. am_g need to be calculated later since rho_g is an imput variable - REAL, PARAMETER, PRIVATE:: bm_g = 3.0 - REAL, PARAMETER, PRIVATE:: am_i = PI2*rho_i/6.0 - REAL, PARAMETER, PRIVATE:: bm_i = 3.0 - -!..Fallspeed power laws relations: v = (av*D**bv)*exp(-fv*D) -!.. Rain from Ferrier (1994), ice, snow, and graupel from -!.. Thompson et al (2008). Coefficient fv is zero for graupel/ice. - REAL, PARAMETER, PRIVATE:: av_r = 4854.0 - REAL, PARAMETER, PRIVATE:: bv_r = 1.0 - REAL, PARAMETER, PRIVATE:: fv_r = 195.0 -! REAL, PARAMETER, PRIVATE:: av_s = 40.0 ! trude commented out. Will be used as input vaiable. -! REAL, PARAMETER, PRIVATE:: bv_s = 0.55 ! trude commented out. Will be used as input vaiable. -! REAL, PARAMETER, PRIVATE:: fv_s = 100.0 ! trude commented out. Will be used as input vaiable. -! REAL, PARAMETER, PRIVATE:: av_g = 442.0 ! trude commented out. Will be used as input vaiable. -! REAL, PARAMETER, PRIVATE:: bv_g = 0.89 ! trude commented out. Will be used as input vaiable. -! REAL, PARAMETER, PRIVATE:: av_i = 1847.5 - REAL, PARAMETER, PRIVATE:: bv_i = 1.0 - -!..Capacitance of sphere and plates/aggregates: D**3, D**2 - REAL, PARAMETER, PRIVATE:: C_cube = 0.5 -! REAL, PARAMETER, PRIVATE:: C_sqrd = 0.3 - -!..Collection efficiencies. Rain/snow/graupel collection of cloud -!.. droplets use variables (Ef_rw, Ef_sw, Ef_gw respectively) and -!.. get computed elsewhere because they are dependent on stokes -!.. number. -! REAL, PARAMETER, PRIVATE:: Ef_si = 0.05 -! REAL, PARAMETER, PRIVATE:: Ef_rs = 0.95 -! REAL, PARAMETER, PRIVATE:: Ef_rg = 0.75 -! REAL, PARAMETER, PRIVATE:: Ef_ri = 0.95 - -!..Minimum microphys values -!.. R1 value, 1.E-12, cannot be set lower because of numerical -!.. problems with Paul Field's moments and should not be set larger -!.. because of truncation problems in snow/ice growth. - REAL, PARAMETER, PRIVATE:: R1 = 1.E-12 - REAL, PARAMETER, PRIVATE:: R2 = 1.E-6 - REAL, PARAMETER, PRIVATE:: eps = 1.E-15 - -!..Constants in Cooper curve relation for cloud ice number. -! REAL, PARAMETER, PRIVATE:: TNO = 5.0 ! trude comment this out for use as input variable instead - REAL, PARAMETER, PRIVATE:: ATO = 0.304 - -!..Rho_not used in fallspeed relations (rho_not/rho)**.5 adjustment. - REAL, PARAMETER, PRIVATE:: rho_not = 101325.0/(287.05*298.0) - -!..Schmidt number - REAL, PARAMETER, PRIVATE:: Sc = 0.632 - REAL, PRIVATE:: Sc3 - -!..Homogeneous freezing temperature - REAL, PARAMETER, PRIVATE:: HGFR = 235.16 - -!..Water vapor and air gas constants at constant pressure - REAL, PARAMETER, PRIVATE:: Rv = 461.5 - REAL, PARAMETER, PRIVATE:: oRv = 1./Rv -! REAL, PARAMETER, PRIVATE:: R = 287.04 !trude added. Note, R = 287.058 is defined in data_structures, and conflict with definition here. Need to determine what to to about it. - REAL, PARAMETER, PRIVATE:: RR2 = 287.04 !trude added. Note, R = 287.058 is defined in data_structures, and conflict with definition here. Need to determine what to to about it. -! REAL, PARAMETER, PRIVATE:: Cp = 1004.0 !trude added. Note, Cp = 1012.0 is defined in data_structures, and conflict with definition here. Need to determine what to to about it. - REAL, PARAMETER, PRIVATE:: Cp2 = 1004.0 !trude added. Note, Cp = 1012.0 is defined in data_structures, and conflict with definition here. Need to determine what to to about it. - -!..Enthalpy of sublimation, vaporization, and fusion at 0C. - REAL, PARAMETER, PRIVATE:: lsub = 2.834E6 - REAL, PARAMETER, PRIVATE:: lvap0 = 2.5E6 - REAL, PARAMETER, PRIVATE:: lfus = lsub - lvap0 - REAL, PARAMETER, PRIVATE:: olfus = 1./lfus - -!..Ice initiates with this mass (kg), corresponding diameter calc. -!..Min diameters and mass of cloud, rain, snow, and graupel (m, kg). - REAL, PARAMETER, PRIVATE:: xm0i = 1.E-12 - REAL, PARAMETER, PRIVATE:: D0c = 1.E-6 - REAL, PARAMETER, PRIVATE:: D0r = 50.E-6 - REAL, PARAMETER, PRIVATE:: D0s = 200.E-6 - REAL, PARAMETER, PRIVATE:: D0g = 250.E-6 - REAL, PRIVATE:: D0i, xm0s, xm0g - -!..Lookup table dimensions - INTEGER, PARAMETER, PRIVATE:: nbins = 100 - INTEGER, PARAMETER, PRIVATE:: nbc = nbins - INTEGER, PARAMETER, PRIVATE:: nbi = nbins - INTEGER, PARAMETER, PRIVATE:: nbr = nbins - INTEGER, PARAMETER, PRIVATE:: nbs = nbins - INTEGER, PARAMETER, PRIVATE:: nbg = nbins - INTEGER, PARAMETER, PRIVATE:: ntb_c = 37 - INTEGER, PARAMETER, PRIVATE:: ntb_i = 64 - INTEGER, PARAMETER, PRIVATE:: ntb_r = 37 - INTEGER, PARAMETER, PRIVATE:: ntb_s = 28 - INTEGER, PARAMETER, PRIVATE:: ntb_g = 28 - INTEGER, PARAMETER, PRIVATE:: ntb_g1 = 28 - INTEGER, PARAMETER, PRIVATE:: ntb_r1 = 37 - INTEGER, PARAMETER, PRIVATE:: ntb_i1 = 55 - INTEGER, PARAMETER, PRIVATE:: ntb_t = 9 - INTEGER, PRIVATE:: nic2, nii2, nii3, nir2, nir3, nis2, nig2, nig3 - - DOUBLE PRECISION, DIMENSION(nbins+1):: xDx - DOUBLE PRECISION, DIMENSION(nbc):: Dc, dtc - DOUBLE PRECISION, DIMENSION(nbi):: Di, dti - DOUBLE PRECISION, DIMENSION(nbr):: Dr, dtr - DOUBLE PRECISION, DIMENSION(nbs):: Ds, dts - DOUBLE PRECISION, DIMENSION(nbg):: Dg, dtg - -!..Lookup tables for cloud water content (kg/m**3). - REAL, DIMENSION(ntb_c), PARAMETER, PRIVATE:: & - r_c = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & - 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & - 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & - 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & - 1.e-2/) - -!..Lookup tables for cloud ice content (kg/m**3). - REAL, DIMENSION(ntb_i), PARAMETER, PRIVATE:: & - r_i = (/1.e-10,2.e-10,3.e-10,4.e-10, & - 5.e-10,6.e-10,7.e-10,8.e-10,9.e-10, & - 1.e-9,2.e-9,3.e-9,4.e-9,5.e-9,6.e-9,7.e-9,8.e-9,9.e-9, & - 1.e-8,2.e-8,3.e-8,4.e-8,5.e-8,6.e-8,7.e-8,8.e-8,9.e-8, & - 1.e-7,2.e-7,3.e-7,4.e-7,5.e-7,6.e-7,7.e-7,8.e-7,9.e-7, & - 1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & - 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & - 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & - 1.e-3/) - -!..Lookup tables for rain content (kg/m**3). - REAL, DIMENSION(ntb_r), PARAMETER, PRIVATE:: & - r_r = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & - 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & - 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & - 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & - 1.e-2/) - -!..Lookup tables for graupel content (kg/m**3). - REAL, DIMENSION(ntb_g), PARAMETER, PRIVATE:: & - r_g = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & - 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & - 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & - 1.e-2/) - -!..Lookup tables for snow content (kg/m**3). - REAL, DIMENSION(ntb_s), PARAMETER, PRIVATE:: & - r_s = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & - 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & - 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & - 1.e-2/) - -!..Lookup tables for rain y-intercept parameter (/m**4). - REAL, DIMENSION(ntb_r1), PARAMETER, PRIVATE:: & - N0r_exp = (/1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, & - 1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7, & - 1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8, & - 1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9, & - 1.e10/) - -!..Lookup tables for graupel y-intercept parameter (/m**4). - REAL, DIMENSION(ntb_g1), PARAMETER, PRIVATE:: & - N0g_exp = (/1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, & - 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, & - 1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, & - 1.e7/) - -!..Lookup tables for ice number concentration (/m**3). - REAL, DIMENSION(ntb_i1), PARAMETER, PRIVATE:: & - Nt_i = (/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0, & - 1.e1,2.e1,3.e1,4.e1,5.e1,6.e1,7.e1,8.e1,9.e1, & - 1.e2,2.e2,3.e2,4.e2,5.e2,6.e2,7.e2,8.e2,9.e2, & - 1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3, & - 1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, & - 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, & - 1.e6/) - -!..For snow moments conversions (from Field et al. 2005) - REAL, DIMENSION(10), PARAMETER, PRIVATE:: & - sa = (/ 5.065339, -0.062659, -3.032362, 0.029469, -0.000285, & - 0.31255, 0.000204, 0.003199, 0.0, -0.015952/) - REAL, DIMENSION(10), PARAMETER, PRIVATE:: & - sb = (/ 0.476221, -0.015896, 0.165977, 0.007468, -0.000141, & - 0.060366, 0.000079, 0.000594, 0.0, -0.003577/) - -!..Temperatures (5 C interval 0 to -40) used in lookup tables. - REAL, DIMENSION(ntb_t), PARAMETER, PRIVATE:: & - Tc = (/-0.01, -5., -10., -15., -20., -25., -30., -35., -40./) - -!..Lookup tables for various accretion/collection terms. -!.. ntb_x refers to the number of elements for rain, snow, graupel, -!.. and temperature array indices. Variables beginning with t-p/c/m/n -!.. represent lookup tables. Save compile-time memory by making -!.. allocatable (2009Jun12, J. Michalakes). - INTEGER, PARAMETER, PRIVATE:: R8SIZE = 8 - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & - tcg_racg, tmr_racg, tcr_gacr, tmg_gacr, & - tnr_racg, tnr_gacr - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & - tcs_racs1, tmr_racs1, tcs_racs2, tmr_racs2, & - tcr_sacr1, tms_sacr1, tcr_sacr2, tms_sacr2, & - tnr_racs1, tnr_racs2, tnr_sacr1, tnr_sacr2 - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: & - tpi_qcfz, tni_qcfz - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:):: & - tpi_qrfz, tpg_qrfz, tni_qrfz, tnr_qrfz - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: & - tps_iaus, tni_iaus, tpi_ide - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efrw - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efsw - REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:):: tnr_rev - -!..Variables holding a bunch of exponents and gamma values (cloud water, -!.. cloud ice, rain, snow, then graupel). - REAL, DIMENSION(3), PRIVATE:: cce, ccg - REAL, PRIVATE:: ocg1, ocg2 - REAL, DIMENSION(7), PRIVATE:: cie, cig - REAL, PRIVATE:: oig1, oig2, obmi - REAL, DIMENSION(13), PRIVATE:: cre, crg - REAL, PRIVATE:: ore1, org1, org2, org3, obmr - REAL, DIMENSION(18), PRIVATE:: cse, csg - REAL, PRIVATE:: oams, obms, ocms - REAL, DIMENSION(12), PRIVATE:: cge, cgg - REAL, PRIVATE:: oge1, ogg1, ogg2, ogg3, oamg, obmg, ocmg - -!..Declaration of precomputed constants in various rate eqns. - REAL:: t1_qr_qc, t1_qr_qi, t2_qr_qi, t1_qg_qc, t1_qs_qc, t1_qs_qi - REAL:: t1_qr_ev, t2_qr_ev - REAL:: t1_qs_sd, t2_qs_sd, t1_qg_sd, t2_qg_sd - REAL:: t1_qs_me, t2_qs_me, t1_qg_me, t2_qg_me - - CHARACTER*256:: mp_debug - -! TRUDE - REAL, PRIVATE :: Nt_c, TNO, am_s,rho_g,av_s,bv_s,fv_s,av_g,bv_g,av_i,Ef_si,Ef_rs,Ef_rg,Ef_ri - REAL, PRIVATE :: C_cubes,C_sqrd, mu_r, t_adjust - LOGICAL, PRIVATE :: Ef_rw_l, Ef_sw_l - REAL, PRIVATE :: am_g - - -!+---+ -!+---+-----------------------------------------------------------------+ -!..END DECLARATIONS -!+---+-----------------------------------------------------------------+ -!+---+ -!ctrlL - CONTAINS -!!! The subroutine below is commented to support compiling this module outside ICAR - -!!! SUBROUTINE thompson_init(mp_options) -!!! -!!! IMPLICIT NONE -!!! -!!! ! ++ trude -!!! type(mp_options_type), intent(in) :: mp_options -!!! ! -- trude -!!! INTEGER:: i, j, k, m, n -!!! LOGICAL:: micro_init -!!! !..Allocate space for lookup tables (J. Michalakes 2009Jun08). -!!! micro_init = .FALSE. -!!! if (.NOT. ALLOCATED(tcg_racg) ) then -!!! ALLOCATE(tcg_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! micro_init = .TRUE. -!!! endif -!!! -!!! if (.NOT. ALLOCATED(tmr_racg)) ALLOCATE(tmr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tcr_gacr)) ALLOCATE(tcr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tmg_gacr)) ALLOCATE(tmg_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_racg)) ALLOCATE(tnr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_gacr)) ALLOCATE(tnr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) -!!! -!!! if (.NOT. ALLOCATED(tcs_racs1)) ALLOCATE(tcs_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tmr_racs1)) ALLOCATE(tmr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tcs_racs2)) ALLOCATE(tcs_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tmr_racs2)) ALLOCATE(tmr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tcr_sacr1)) ALLOCATE(tcr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tms_sacr1)) ALLOCATE(tms_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tcr_sacr2)) ALLOCATE(tcr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tms_sacr2)) ALLOCATE(tms_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_racs1)) ALLOCATE(tnr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_racs2)) ALLOCATE(tnr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_sacr1)) ALLOCATE(tnr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! if (.NOT. ALLOCATED(tnr_sacr2)) ALLOCATE(tnr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) -!!! -!!! if (.NOT. ALLOCATED(tpi_qcfz)) ALLOCATE(tpi_qcfz(ntb_c,45)) -!!! if (.NOT. ALLOCATED(tni_qcfz)) ALLOCATE(tni_qcfz(ntb_c,45)) -!!! -!!! if (.NOT. ALLOCATED(tpi_qrfz)) ALLOCATE(tpi_qrfz(ntb_r,ntb_r1,45)) -!!! if (.NOT. ALLOCATED(tpg_qrfz)) ALLOCATE(tpg_qrfz(ntb_r,ntb_r1,45)) -!!! if (.NOT. ALLOCATED(tni_qrfz)) ALLOCATE(tni_qrfz(ntb_r,ntb_r1,45)) -!!! if (.NOT. ALLOCATED(tnr_qrfz)) ALLOCATE(tnr_qrfz(ntb_r,ntb_r1,45)) -!!! -!!! if (.NOT. ALLOCATED(tps_iaus)) ALLOCATE(tps_iaus(ntb_i,ntb_i1)) -!!! if (.NOT. ALLOCATED(tni_iaus)) ALLOCATE(tni_iaus(ntb_i,ntb_i1)) -!!! if (.NOT. ALLOCATED(tpi_ide)) ALLOCATE(tpi_ide(ntb_i,ntb_i1)) -!!! -!!! if (.NOT. ALLOCATED(t_Efrw)) ALLOCATE(t_Efrw(nbr,nbc)) -!!! if (.NOT. ALLOCATED(t_Efsw)) ALLOCATE(t_Efsw(nbs,nbc)) -!!! -!!! if (.NOT. ALLOCATED(tnr_rev)) ALLOCATE(tnr_rev(nbr, ntb_r1, ntb_r)) -!!! -!!! if (micro_init) then -!!! -!!! !++ trude -!!! Nt_c = mp_options%Nt_c -!!! TNO = mp_options%TNO -!!! am_s = mp_options%am_s -!!! rho_g = mp_options%rho_g -!!! av_s = mp_options%av_s -!!! bv_s = mp_options%bv_s -!!! fv_s = mp_options%fv_s -!!! av_g = mp_options%av_g -!!! bv_g = mp_options%bv_g -!!! av_i = mp_options%av_i -!!! Ef_rs = mp_options%Ef_rs -!!! Ef_rg = mp_options%Ef_rg -!!! Ef_si = mp_options%Ef_si -!!! Ef_ri = mp_options%Ef_ri -!!! C_cubes = mp_options%C_cubes -!!! C_sqrd = mp_options%C_sqrd -!!! mu_r = mp_options%mu_r -!!! t_adjust = mp_options%t_adjust -!!! Ef_rw_l = mp_options%Ef_rw_l -!!! Ef_sw_l = mp_options%Ef_sw_l -!!! am_g = PI2*rho_g/6.0 ! trude, nb, this should can be defined in the modular section -!!! !--trude -!!! !..From Martin et al. (1994), assign gamma shape parameter mu for cloud -!!! !.. drops according to general dispersion characteristics (disp=~0.25 -!!! !.. for Maritime and 0.45 for Continental). -!!! !.. disp=SQRT((mu+2)/(mu+1) - 1) so mu varies from 15 for Maritime -!!! !.. to 2 for really dirty air. -!!! mu_c = MIN(15., (1000.E6/Nt_c + 2.)) -!!! -!!! !..Schmidt number to one-third used numerous times. -!!! Sc3 = Sc**(1./3.) -!!! -!!! !..Compute min ice diam from mass, min snow/graupel mass from diam. -!!! D0i = (xm0i/am_i)**(1./bm_i) -!!! xm0s = am_s * D0s**bm_s -!!! xm0g = am_g * D0g**bm_g -!!! -!!! !..These constants various exponents and gamma() assoc with cloud, -!!! !.. rain, snow, and graupel. -!!! cce(1) = mu_c + 1. -!!! cce(2) = bm_r + mu_c + 1. -!!! cce(3) = bm_r + mu_c + 4. -!!! ccg(1) = WGAMMA(cce(1)) -!!! ccg(2) = WGAMMA(cce(2)) -!!! ccg(3) = WGAMMA(cce(3)) -!!! ocg1 = 1./ccg(1) -!!! ocg2 = 1./ccg(2) -!!! -!!! cie(1) = mu_i + 1. -!!! cie(2) = bm_i + mu_i + 1. -!!! cie(3) = bm_i + mu_i + bv_i + 1. -!!! cie(4) = mu_i + bv_i + 1. -!!! cie(5) = mu_i + 2. -!!! cie(6) = bm_i*0.5 + mu_i + bv_i + 1. -!!! cie(7) = bm_i*0.5 + mu_i + 1. -!!! cig(1) = WGAMMA(cie(1)) -!!! cig(2) = WGAMMA(cie(2)) -!!! cig(3) = WGAMMA(cie(3)) -!!! cig(4) = WGAMMA(cie(4)) -!!! cig(5) = WGAMMA(cie(5)) -!!! cig(6) = WGAMMA(cie(6)) -!!! cig(7) = WGAMMA(cie(7)) -!!! oig1 = 1./cig(1) -!!! oig2 = 1./cig(2) -!!! obmi = 1./bm_i -!!! -!!! cre(1) = bm_r + 1. -!!! cre(2) = mu_r + 1. -!!! cre(3) = bm_r + mu_r + 1. -!!! cre(4) = bm_r*2. + mu_r + 1. -!!! cre(5) = mu_r + bv_r + 1. -!!! cre(6) = bm_r + mu_r + bv_r + 1. -!!! cre(7) = bm_r*0.5 + mu_r + bv_r + 1. -!!! cre(8) = bm_r + mu_r + bv_r + 3. -!!! cre(9) = mu_r + bv_r + 3. -!!! cre(10) = mu_r + 2. -!!! cre(11) = 0.5*(bv_r + 5. + 2.*mu_r) -!!! cre(12) = bm_r*0.5 + mu_r + 1. -!!! cre(13) = bm_r*2. + mu_r + bv_r + 1. -!!! do n = 1, 13 -!!! crg(n) = WGAMMA(cre(n)) -!!! enddo -!!! obmr = 1./bm_r -!!! ore1 = 1./cre(1) -!!! org1 = 1./crg(1) -!!! org2 = 1./crg(2) -!!! org3 = 1./crg(3) -!!! -!!! cse(1) = bm_s + 1. -!!! cse(2) = bm_s + 2. -!!! cse(3) = bm_s*2. -!!! cse(4) = bm_s + bv_s + 1. -!!! cse(5) = bm_s*2. + bv_s + 1. -!!! cse(6) = bm_s*2. + 1. -!!! cse(7) = bm_s + mu_s + 1. -!!! cse(8) = bm_s + mu_s + 2. -!!! cse(9) = bm_s + mu_s + 3. -!!! cse(10) = bm_s + mu_s + bv_s + 1. -!!! cse(11) = bm_s*2. + mu_s + bv_s + 1. -!!! cse(12) = bm_s*2. + mu_s + 1. -!!! cse(13) = bv_s + 2. -!!! cse(14) = bm_s + bv_s -!!! cse(15) = mu_s + 1. -!!! cse(16) = 1.0 + (1.0 + bv_s)/2. -!!! cse(17) = cse(16) + mu_s + 1. -!!! cse(18) = bv_s + mu_s + 3. -!!! do n = 1, 18 -!!! csg(n) = WGAMMA(cse(n)) -!!! enddo -!!! oams = 1./am_s -!!! obms = 1./bm_s -!!! ocms = oams**obms -!!! -!!! cge(1) = bm_g + 1. -!!! cge(2) = mu_g + 1. -!!! cge(3) = bm_g + mu_g + 1. -!!! cge(4) = bm_g*2. + mu_g + 1. -!!! cge(5) = bm_g*2. + mu_g + bv_g + 1. -!!! cge(6) = bm_g + mu_g + bv_g + 1. -!!! cge(7) = bm_g + mu_g + bv_g + 2. -!!! cge(8) = bm_g + mu_g + bv_g + 3. -!!! cge(9) = mu_g + bv_g + 3. -!!! cge(10) = mu_g + 2. -!!! cge(11) = 0.5*(bv_g + 5. + 2.*mu_g) -!!! cge(12) = 0.5*(bv_g + 5.) + mu_g -!!! do n = 1, 12 -!!! cgg(n) = WGAMMA(cge(n)) -!!! enddo -!!! oamg = 1./am_g -!!! obmg = 1./bm_g -!!! ocmg = oamg**obmg -!!! oge1 = 1./cge(1) -!!! ogg1 = 1./cgg(1) -!!! ogg2 = 1./cgg(2) -!!! ogg3 = 1./cgg(3) -!!! -!!! !+---+-----------------------------------------------------------------+ -!!! !..Simplify various rate eqns the best we can now. -!!! !+---+-----------------------------------------------------------------+ -!!! -!!! !..Rain collecting cloud water and cloud ice -!!! t1_qr_qc = PI2*.25*av_r * crg(9) -!!! t1_qr_qi = PI2*.25*av_r * crg(9) -!!! t2_qr_qi = PI2*.25*am_r*av_r * crg(8) -!!! -!!! !..Graupel collecting cloud water -!!! t1_qg_qc = PI2*.25*av_g * cgg(9) -!!! -!!! !..Snow collecting cloud water -!!! t1_qs_qc = PI2*.25*av_s -!!! -!!! !..Snow collecting cloud ice -!!! t1_qs_qi = PI2*.25*av_s -!!! -!!! !..Evaporation of rain; ignore depositional growth of rain. -!!! t1_qr_ev = 0.78 * crg(10) -!!! t2_qr_ev = 0.308*Sc3*SQRT(av_r) * crg(11) -!!! !..Sublimation/depositional growth of snow -!!! t1_qs_sd = 0.86 -!!! t2_qs_sd = 0.28*Sc3*SQRT(av_s) -!!! -!!! !..Melting of snow -!!! t1_qs_me = PI2*4.*C_sqrd*olfus * 0.86 -!!! t2_qs_me = PI2*4.*C_sqrd*olfus * 0.28*Sc3*SQRT(av_s) -!!! -!!! !..Sublimation/depositional growth of graupel -!!! t1_qg_sd = 0.86 * cgg(10) -!!! t2_qg_sd = 0.28*Sc3*SQRT(av_g) * cgg(11) -!!! -!!! !..Melting of graupel -!!! t1_qg_me = PI2*4.*C_cube*olfus * 0.86 * cgg(10) -!!! t2_qg_me = PI2*4.*C_cube*olfus * 0.28*Sc3*SQRT(av_g) * cgg(11) -!!! -!!! !..Constants for helping find lookup table indexes. -!!! nic2 = NINT(ALOG10(r_c(1))) -!!! nii2 = NINT(ALOG10(r_i(1))) -!!! nii3 = NINT(ALOG10(Nt_i(1))) -!!! nir2 = NINT(ALOG10(r_r(1))) -!!! nir3 = NINT(ALOG10(N0r_exp(1))) -!!! nis2 = NINT(ALOG10(r_s(1))) -!!! nig2 = NINT(ALOG10(r_g(1))) -!!! nig3 = NINT(ALOG10(N0g_exp(1))) -!!! -!!! !..Create bins of cloud water (from min diameter up to 100 microns). -!!! Dc(1) = D0c*1.0d0 -!!! dtc(1) = D0c*1.0d0 -!!! do n = 2, nbc -!!! Dc(n) = Dc(n-1) + 1.0D-6 -!!! dtc(n) = (Dc(n) - Dc(n-1)) -!!! enddo -!!! -!!! !..Create bins of cloud ice (from min diameter up to 5x min snow size). -!!! xDx(1) = D0i*1.0d0 -!!! xDx(nbi+1) = 5.0d0*D0s -!!! do n = 2, nbi -!!! xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbi) & -!!! *DLOG(xDx(nbi+1)/xDx(1)) +DLOG(xDx(1))) -!!! enddo -!!! do n = 1, nbi -!!! Di(n) = DSQRT(xDx(n)*xDx(n+1)) -!!! dti(n) = xDx(n+1) - xDx(n) -!!! enddo -!!! -!!! !..Create bins of rain (from min diameter up to 5 mm). -!!! xDx(1) = D0r*1.0d0 -!!! xDx(nbr+1) = 0.005d0 -!!! do n = 2, nbr -!!! xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbr) & -!!! *DLOG(xDx(nbr+1)/xDx(1)) +DLOG(xDx(1))) -!!! enddo -!!! do n = 1, nbr -!!! Dr(n) = DSQRT(xDx(n)*xDx(n+1)) -!!! dtr(n) = xDx(n+1) - xDx(n) -!!! enddo -!!! -!!! !..Create bins of snow (from min diameter up to 2 cm). -!!! xDx(1) = D0s*1.0d0 -!!! xDx(nbs+1) = 0.02d0 -!!! do n = 2, nbs -!!! xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbs) & -!!! *DLOG(xDx(nbs+1)/xDx(1)) +DLOG(xDx(1))) -!!! enddo -!!! do n = 1, nbs -!!! Ds(n) = DSQRT(xDx(n)*xDx(n+1)) -!!! dts(n) = xDx(n+1) - xDx(n) -!!! enddo -!!! -!!! !..Create bins of graupel (from min diameter up to 5 cm). -!!! xDx(1) = D0g*1.0d0 -!!! xDx(nbg+1) = 0.05d0 -!!! do n = 2, nbg -!!! xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbg) & -!!! *DLOG(xDx(nbg+1)/xDx(1)) +DLOG(xDx(1))) -!!! enddo -!!! do n = 1, nbg -!!! Dg(n) = DSQRT(xDx(n)*xDx(n+1)) -!!! dtg(n) = xDx(n+1) - xDx(n) -!!! enddo -!!! -!!! !+---+-----------------------------------------------------------------+ -!!! !..Create lookup tables for most costly calculations. -!!! !+---+-----------------------------------------------------------------+ -!!! -!!! do m = 1, ntb_r -!!! do k = 1, ntb_r1 -!!! do j = 1, ntb_g -!!! do i = 1, ntb_g1 -!!! tcg_racg(i,j,k,m) = 0.0d0 -!!! tmr_racg(i,j,k,m) = 0.0d0 -!!! tcr_gacr(i,j,k,m) = 0.0d0 -!!! tmg_gacr(i,j,k,m) = 0.0d0 -!!! tnr_racg(i,j,k,m) = 0.0d0 -!!! tnr_gacr(i,j,k,m) = 0.0d0 -!!! enddo -!!! enddo -!!! enddo -!!! enddo -!!! -!!! do m = 1, ntb_r -!!! do k = 1, ntb_r1 -!!! do j = 1, ntb_t -!!! do i = 1, ntb_s -!!! tcs_racs1(i,j,k,m) = 0.0d0 -!!! tmr_racs1(i,j,k,m) = 0.0d0 -!!! tcs_racs2(i,j,k,m) = 0.0d0 -!!! tmr_racs2(i,j,k,m) = 0.0d0 -!!! tcr_sacr1(i,j,k,m) = 0.0d0 -!!! tms_sacr1(i,j,k,m) = 0.0d0 -!!! tcr_sacr2(i,j,k,m) = 0.0d0 -!!! tms_sacr2(i,j,k,m) = 0.0d0 -!!! tnr_racs1(i,j,k,m) = 0.0d0 -!!! tnr_racs2(i,j,k,m) = 0.0d0 -!!! tnr_sacr1(i,j,k,m) = 0.0d0 -!!! tnr_sacr2(i,j,k,m) = 0.0d0 -!!! enddo -!!! enddo -!!! enddo -!!! enddo -!!! -!!! do k = 1, 45 -!!! do j = 1, ntb_r1 -!!! do i = 1, ntb_r -!!! tpi_qrfz(i,j,k) = 0.0d0 -!!! tni_qrfz(i,j,k) = 0.0d0 -!!! tpg_qrfz(i,j,k) = 0.0d0 -!!! tnr_qrfz(i,j,k) = 0.0d0 -!!! enddo -!!! enddo -!!! do i = 1, ntb_c -!!! tpi_qcfz(i,k) = 0.0d0 -!!! tni_qcfz(i,k) = 0.0d0 -!!! enddo -!!! enddo -!!! -!!! do j = 1, ntb_i1 -!!! do i = 1, ntb_i -!!! tps_iaus(i,j) = 0.0d0 -!!! tni_iaus(i,j) = 0.0d0 -!!! tpi_ide(i,j) = 0.0d0 -!!! enddo -!!! enddo -!!! -!!! do j = 1, nbc -!!! do i = 1, nbr -!!! t_Efrw(i,j) = 0.0 -!!! enddo -!!! do i = 1, nbs -!!! t_Efsw(i,j) = 0.0 -!!! enddo -!!! enddo -!!! -!!! do k = 1, ntb_r -!!! do j = 1, ntb_r1 -!!! do i = 1, nbr -!!! tnr_rev(i,j,k) = 0.0d0 -!!! enddo -!!! enddo -!!! enddo -!!! -!!! ! CALL wrf_debug(150, 'CREATING MICROPHYSICS LOOKUP TABLES ... ') -!!! ! WRITE (wrf_err_message, '(a, f5.2, a, f5.2, a, f5.2, a, f5.2)') & -!!! ! ' using: mu_c=',mu_c,' mu_i=',mu_i,' mu_r=',mu_r,' mu_g=',mu_g -!!! ! CALL wrf_debug(150, wrf_err_message) -!!! -!!! !..Collision efficiency between rain/snow and cloud water. -!!! ! CALL wrf_debug(200, ' creating qc collision eff tables') -!!! call table_Efrw -!!! call table_Efsw -!!! -!!! !..Drop evaporation. -!!! ! CALL wrf_debug(200, ' creating rain evap table') -!!! ! call table_dropEvap -!!! -!!! !..Initialize various constants for computing radar reflectivity. -!!! ! xam_r = am_r -!!! ! xbm_r = bm_r -!!! ! xmu_r = mu_r -!!! ! xam_s = am_s -!!! ! xbm_s = bm_s -!!! ! xmu_s = mu_s -!!! ! xam_g = am_g -!!! ! xbm_g = bm_g -!!! ! xmu_g = mu_g -!!! ! call radar_init -!!! -!!! if (.not. iiwarm) then -!!! -!!! !..Rain collecting graupel & graupel collecting rain. -!!! ! CALL wrf_debug(200, ' creating rain collecting graupel table') -!!! call qr_acr_qg -!!! -!!! !..Rain collecting snow & snow collecting rain. -!!! ! CALL wrf_debug(200, ' creating rain collecting snow table') -!!! call qr_acr_qs -!!! -!!! !..Cloud water and rain freezing (Bigg, 1953). -!!! ! CALL wrf_debug(200, ' creating freezing of water drops table') -!!! call freezeH2O -!!! -!!! !..Conversion of some ice mass into snow category. -!!! ! CALL wrf_debug(200, ' creating ice converting to snow table') -!!! call qi_aut_qs -!!! -!!! endif -!!! -!!! ! CALL wrf_debug(150, ' ... DONE microphysical lookup tables') -!!! -!!! endif -!!! -!!! END SUBROUTINE thompson_init -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!..This is a wrapper routine designed to transfer values from 3D to 1D. -!+---+-----------------------------------------------------------------+ - SUBROUTINE mp_gt_driver(qv, qc, qr, qi, qs, qg, ni, nr, & - th, pii, p, dz, dt_in, itimestep, & - RAINNC, RAINNCV, & - SNOWNC, SNOWNCV, & - GRAUPELNC, GRAUPELNCV, SR, & - ids,ide, jds,jde, kds,kde, & ! domain dims - ims,ime, jms,jme, kms,kme, & ! memory dims - its,ite, jts,jte, kts,kte) ! tile dims - - implicit none - -!..Subroutine arguments - INTEGER, INTENT(IN):: ids,ide, jds,jde, kds,kde, & - ims,ime, jms,jme, kms,kme, & - its,ite, jts,jte, kts,kte - REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & - qv, qc, qr, qi, qs, qg, ni, nr, th - REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN):: & - pii, p, dz - REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT):: & - RAINNC, RAINNCV, SR - REAL, DIMENSION(ims:ime, jms:jme), OPTIONAL, INTENT(INOUT):: & - SNOWNC, SNOWNCV, GRAUPELNC, GRAUPELNCV -! REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & -! refl_10cm - REAL, INTENT(IN):: dt_in -!..Local variables - INTEGER, INTENT(IN):: itimestep - REAL, DIMENSION(kts:kte):: & - qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & - nr1d, t1d, p1d, dz1d, dBZ -! REAL, DIMENSION(its:ite, jts:jte):: pcp_ra, pcp_sn, pcp_gr, pcp_ic - REAL:: dt, pptrain, pptsnow, pptgraul, pptice - REAL:: qc_max, qr_max, qs_max, qi_max, qg_max, ni_max, nr_max - INTEGER:: i, j, k - INTEGER:: imax_qc,imax_qr,imax_qi,imax_qs,imax_qg,imax_ni,imax_nr - INTEGER:: jmax_qc,jmax_qr,jmax_qi,jmax_qs,jmax_qg,jmax_ni,jmax_nr - INTEGER:: kmax_qc,kmax_qr,kmax_qi,kmax_qs,kmax_qg,kmax_ni,kmax_nr - INTEGER:: i_start, j_start, i_end, j_end - - -!$OMP PARALLEL DEFAULT(PRIVATE) FIRSTPRIVATE(ids,ide,jds,jde,kds,kde,ims,ime,jms,jme,& -!$OMP kms,kme,its,ite,jts,jte,kts,kte,itimestep) & -!$OMP SHARED(RAINNCV,RAINNC,SNOWNCV,SNOWNC,GRAUPELNCV,GRAUPELNC,SR,th,pii,p,dz,qv,qc,& -!$OMP qi,qr,qs,qg,ni,nr,dt_in,Nt_c,TNO,rho_g,av_s,bv_s,fv_s,av_g,bv_g,EF_si,Ef_ri) -! old w/pcp_xx vars !!$OMP qi,qr,qs,qg,ni,nr,pcp_ra,pcp_sn,pcp_gr,pcp_ic,dt_in) - - i_start = its - j_start = jts - i_end = MIN(ite, ide-1) - j_end = MIN(jte, jde-1) - - -!..For idealized testing by developer. -! if ( (ide-ids+1).gt.4 .and. (jde-jds+1).lt.4 .and. & -! ids.eq.its.and.ide.eq.ite.and.jds.eq.jts.and.jde.eq.jte) then -! i_start = its + 2 -! i_end = ite -! j_start = jts -! j_end = jte -! endif - - dt = dt_in - - qc_max = 0. - qr_max = 0. - qs_max = 0. - qi_max = 0. - qg_max = 0 - ni_max = 0. - nr_max = 0. - imax_qc = 0 - imax_qr = 0 - imax_qi = 0 - imax_qs = 0 - imax_qg = 0 - imax_ni = 0 - imax_nr = 0 - jmax_qc = 0 - jmax_qr = 0 - jmax_qi = 0 - jmax_qs = 0 - jmax_qg = 0 - jmax_ni = 0 - jmax_nr = 0 - kmax_qc = 0 - kmax_qr = 0 - kmax_qi = 0 - kmax_qs = 0 - kmax_qg = 0 - kmax_ni = 0 - kmax_nr = 0 -! do i = 1, 256 -! mp_debug(i:i) = char(0) -! enddo -!$omp do schedule(guided) - j_loop: do j = j_start, j_end - i_loop: do i = i_start, i_end - - pptrain = 0. - pptsnow = 0. - pptgraul = 0. - pptice = 0. -! RAINNCV(i,j) = 0. -! IF ( PRESENT (snowncv) ) THEN -! SNOWNCV(i,j) = 0. -! ENDIF -! IF ( PRESENT (graupelncv) ) THEN -! GRAUPELNCV(i,j) = 0. -! ENDIF -! SR(i,j) = 0. - - do k = kts, kte - t1d(k) = th(i,k,j)*pii(i,k,j) - p1d(k) = p(i,k,j) - dz1d(k) = dz(i,k,j) - qv1d(k) = qv(i,k,j) - qc1d(k) = qc(i,k,j) - qi1d(k) = qi(i,k,j) - qr1d(k) = qr(i,k,j) - qs1d(k) = qs(i,k,j) - qg1d(k) = qg(i,k,j) - ni1d(k) = ni(i,k,j) - nr1d(k) = nr(i,k,j) - enddo - - call mp_thompson(qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & - nr1d, t1d, p1d, dz1d, & - pptrain, pptsnow, pptgraul, pptice, & - kts, kte, dt, i, j) - -! pcp_ra(i,j) = pptrain -! pcp_sn(i,j) = pptsnow -! pcp_gr(i,j) = pptgraul -! pcp_ic(i,j) = pptice -! RAINNCV(i,j) = pptrain + pptsnow + pptgraul + pptice - RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptgraul + pptice - IF ( PRESENT(SNOWNC) ) SNOWNC(i,j) = SNOWNC(i,j) + pptsnow + pptice - IF ( PRESENT(SNOWNCV) ) SNOWNCV(i,j) = pptsnow + pptice - - IF ( PRESENT(GRAUPELNC) ) GRAUPELNC(i,j) = GRAUPELNC(i,j) + pptgraul - IF ( PRESENT(GRAUPELNCV) ) GRAUPELNCV(i,j) = pptgraul - - SR(i,j) = (pptsnow + pptgraul + pptice)/(RAINNCV(i,j)+1.e-12) - - do k = kts, kte - qv(i,k,j) = qv1d(k) - qc(i,k,j) = qc1d(k) - qi(i,k,j) = qi1d(k) - qr(i,k,j) = qr1d(k) - qs(i,k,j) = qs1d(k) - qg(i,k,j) = qg1d(k) - ni(i,k,j) = ni1d(k) - nr(i,k,j) = nr1d(k) - th(i,k,j) = t1d(k)/pii(i,k,j) -! if (qc1d(k) .gt. qc_max) then -! imax_qc = i -! jmax_qc = j -! kmax_qc = k -! qc_max = qc1d(k) -! elseif (qc1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative qc ', qc1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (qr1d(k) .gt. qr_max) then -! imax_qr = i -! jmax_qr = j -! kmax_qr = k -! qr_max = qr1d(k) -! elseif (qr1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative qr ', qr1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (nr1d(k) .gt. nr_max) then -! imax_nr = i -! jmax_nr = j -! kmax_nr = k -! nr_max = nr1d(k) -! elseif (nr1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative nr ', nr1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (qs1d(k) .gt. qs_max) then -! imax_qs = i -! jmax_qs = j -! kmax_qs = k -! qs_max = qs1d(k) -! elseif (qs1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative qs ', qs1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (qi1d(k) .gt. qi_max) then -! imax_qi = i -! jmax_qi = j -! kmax_qi = k -! qi_max = qi1d(k) -! elseif (qi1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative qi ', qi1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (qg1d(k) .gt. qg_max) then -! imax_qg = i -! jmax_qg = j -! kmax_qg = k -! qg_max = qg1d(k) -! elseif (qg1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative qg ', qg1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif -! if (ni1d(k) .gt. ni_max) then -! imax_ni = i -! jmax_ni = j -! kmax_ni = k -! ni_max = ni1d(k) -! elseif (ni1d(k) .lt. 0.0) then -! write(mp_debug,*) 'WARNING, negative ni ', ni1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) -! endif - if (qv1d(k) .lt. 1.E-7) then - if (k.lt.kte-2 .and. k.gt.kts+1) then - qv(i,k,j) = 0.5*(qv(i,k-1,j) + qv(i,k+1,j)) - ! note, if qv(i,k+1,j) < 0 then qv(i,k,j) could still be < 0 - if (qv1d(k) .lt. 1.E-7) then - qv(i,k,j) = 1.E-7 - endif - else - qv(i,k,j) = 1.E-7 - endif -! write(mp_debug,*) 'WARNING, negative qv ', qv1d(k), & -! ' at i,j,k=', i,j,k - ! CALL wrf_debug(150, mp_debug) - endif - enddo - -! IF ( PRESENT (diagflag) ) THEN -! if (diagflag .and. do_radar_ref == 1) then -! call calc_refl10cm (qv1d, qc1d, qr1d, nr1d, qs1d, qg1d, & -! t1d, p1d, dBZ, kts, kte, i, j) -! do k = kts, kte -! refl_10cm(i,k,j) = MAX(-35., dBZ(k)) -! enddo -! endif -! ENDIF - - enddo i_loop - enddo j_loop - !$omp end do - !$omp end parallel - -! DEBUG - GT -! write(mp_debug,'(a,7(a,e13.6,1x,a,i3,a,i3,a,i3,a,1x))') 'MP-GT:', & -! 'qc: ', qc_max, '(', imax_qc, ',', jmax_qc, ',', kmax_qc, ')', & -! 'qr: ', qr_max, '(', imax_qr, ',', jmax_qr, ',', kmax_qr, ')', & -! 'qi: ', qi_max, '(', imax_qi, ',', jmax_qi, ',', kmax_qi, ')', & -! 'qs: ', qs_max, '(', imax_qs, ',', jmax_qs, ',', kmax_qs, ')', & -! 'qg: ', qg_max, '(', imax_qg, ',', jmax_qg, ',', kmax_qg, ')', & -! 'ni: ', ni_max, '(', imax_ni, ',', jmax_ni, ',', kmax_ni, ')', & -! 'nr: ', nr_max, '(', imax_nr, ',', jmax_nr, ',', kmax_nr, ')' - ! CALL wrf_debug(150, mp_debug) -! END DEBUG - GT - -! do i = 1, 256 -! mp_debug(i:i) = char(0) -! enddo - - END SUBROUTINE mp_gt_driver - -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!+---+-----------------------------------------------------------------+ -!.. This subroutine computes the moisture tendencies of water vapor, -!.. cloud droplets, rain, cloud ice (pristine), snow, and graupel. -!.. Previously this code was based on Reisner et al (1998), but few of -!.. those pieces remain. A complete description is now found in -!.. Thompson et al. (2004, 2008). -!+---+-----------------------------------------------------------------+ -! - subroutine mp_thompson (qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & - nr1d, t1d, p1d, dzq, & - pptrain, pptsnow, pptgraul, pptice, & - kts, kte, dt, ii, jj) - - implicit none - -!..Sub arguments - INTEGER, INTENT(IN):: kts, kte, ii, jj - REAL, DIMENSION(kts:kte), INTENT(INOUT):: & - qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & - nr1d, t1d, p1d - REAL, DIMENSION(kts:kte), INTENT(IN):: dzq - REAL, INTENT(INOUT):: pptrain, pptsnow, pptgraul, pptice - REAL, INTENT(IN):: dt - -!..Local variables - REAL, DIMENSION(kts:kte):: tten, qvten, qcten, qiten, & - qrten, qsten, qgten, niten, nrten - - DOUBLE PRECISION, DIMENSION(kts:kte):: prw_vcd - - DOUBLE PRECISION, DIMENSION(kts:kte):: prr_wau, prr_rcw, prr_rcs, & - prr_rcg, prr_sml, prr_gml, & - prr_rci, prv_rev, & - pnr_wau, pnr_rcs, pnr_rcg, & - pnr_rci, pnr_sml, pnr_gml, & - pnr_rev, pnr_rcr, pnr_rfz - - DOUBLE PRECISION, DIMENSION(kts:kte):: pri_inu, pni_inu, pri_ihm, & - pni_ihm, pri_wfz, pni_wfz, & - pri_rfz, pni_rfz, pri_ide, & - pni_ide, pri_rci, pni_rci, & - pni_sci, pni_iau - - DOUBLE PRECISION, DIMENSION(kts:kte):: prs_iau, prs_sci, prs_rcs, & - prs_scw, prs_sde, prs_ihm, & - prs_ide - - DOUBLE PRECISION, DIMENSION(kts:kte):: prg_scw, prg_rfz, prg_gde, & - prg_gcw, prg_rci, prg_rcs, & - prg_rcg, prg_ihm - - DOUBLE PRECISION, PARAMETER:: zeroD0 = 0.0d0 - - REAL, DIMENSION(kts:kte):: temp, pres, qv - REAL, DIMENSION(kts:kte):: rc, ri, rr, rs, rg, ni, nr - REAL, DIMENSION(kts:kte):: rho, rhof, rhof2 - REAL, DIMENSION(kts:kte):: qvs, qvsi, delQvs - REAL, DIMENSION(kts:kte):: satw, sati, ssatw, ssati - REAL, DIMENSION(kts:kte):: diffu, visco, vsc2, & - tcond, lvap, ocp, lvt2 - - DOUBLE PRECISION, DIMENSION(kts:kte):: ilamr, ilamg, N0_r, N0_g - REAL, DIMENSION(kts:kte):: mvd_r, mvd_c - REAL, DIMENSION(kts:kte):: smob, smo2, smo1, smo0, & - smoc, smod, smoe, smof - - REAL, DIMENSION(kts:kte):: sed_r, sed_s, sed_g, sed_i, sed_n - - REAL:: rgvm, delta_tp, orho, lfus2 - REAL, DIMENSION(4):: onstep - DOUBLE PRECISION:: N0_exp, N0_min, lam_exp, lamc, lamr, lamg - DOUBLE PRECISION:: lami, ilami - REAL:: xDc, Dc_b, Dc_g, xDi, xDr, xDs, xDg, Ds_m, Dg_m - DOUBLE PRECISION:: Dr_star - REAL:: zeta1, zeta, taud, tau - REAL:: stoke_r, stoke_s, stoke_g, stoke_i - REAL:: vti, vtr, vts, vtg - REAL, DIMENSION(kts:kte+1):: vtik, vtnik, vtrk, vtnrk, vtsk, vtgk - REAL, DIMENSION(kts:kte):: vts_boost - REAL:: Mrat, ils1, ils2, t1_vts, t2_vts, t3_vts, t4_vts, C_snow - REAL:: a_, b_, loga_, A1, A2, tf - REAL:: tempc, tc0, r_mvd1, r_mvd2, xkrat - REAL:: xnc, xri, xni, xmi, oxmi, xrc, xrr, xnr - REAL:: xsat, rate_max, sump, ratio - REAL:: clap, fcd, dfcd - REAL:: otemp, rvs, rvs_p, rvs_pp, gamsc, alphsc, t1_evap, t1_subl - REAL:: r_frac, g_frac - REAL:: Ef_rw, Ef_sw, Ef_gw, Ef_rr - REAL:: dtsave, odts, odt, odzq - REAL:: xslw1, ygra1, zans1 - INTEGER:: i, k, k2, n, nn, nstep, k_0, kbot, IT, iexfrq - INTEGER, DIMENSION(4):: ksed1 - INTEGER:: nir, nis, nig, nii, nic - INTEGER:: idx_tc, idx_t, idx_s, idx_g1, idx_g, idx_r1, idx_r, & - idx_i1, idx_i, idx_c, idx, idx_d - LOGICAL:: melti, no_micro - LOGICAL, DIMENSION(kts:kte):: L_qc, L_qi, L_qr, L_qs, L_qg - LOGICAL:: debug_flag - -!+---+ - debug_flag = .false. -! if (ii.eq.315 .and. jj.eq.2) debug_flag = .true. - - no_micro = .true. - dtsave = dt - odt = 1./dt - odts = 1./dtsave - iexfrq = 1 - -!+---+-----------------------------------------------------------------+ -!.. Source/sink terms. First 2 chars: "pr" represents source/sink of -!.. mass while "pn" represents source/sink of number. Next char is one -!.. of "v" for water vapor, "r" for rain, "i" for cloud ice, "w" for -!.. cloud water, "s" for snow, and "g" for graupel. Next chars -!.. represent processes: "de" for sublimation/deposition, "ev" for -!.. evaporation, "fz" for freezing, "ml" for melting, "au" for -!.. autoconversion, "nu" for ice nucleation, "hm" for Hallet/Mossop -!.. secondary ice production, and "c" for collection followed by the -!.. character for the species being collected. ALL of these terms are -!.. positive (except for deposition/sublimation terms which can switch -!.. signs based on super/subsaturation) and are treated as negatives -!.. where necessary in the tendency equations. -!+---+-----------------------------------------------------------------+ - - do k = kts, kte - tten(k) = 0. - qvten(k) = 0. - qcten(k) = 0. - qiten(k) = 0. - qrten(k) = 0. - qsten(k) = 0. - qgten(k) = 0. - niten(k) = 0. - nrten(k) = 0. - - prw_vcd(k) = 0. - - prv_rev(k) = 0. - prr_wau(k) = 0. - prr_rcw(k) = 0. - prr_rcs(k) = 0. - prr_rcg(k) = 0. - prr_sml(k) = 0. - prr_gml(k) = 0. - prr_rci(k) = 0. - pnr_wau(k) = 0. - pnr_rcs(k) = 0. - pnr_rcg(k) = 0. - pnr_rci(k) = 0. - pnr_sml(k) = 0. - pnr_gml(k) = 0. - pnr_rev(k) = 0. - pnr_rcr(k) = 0. - pnr_rfz(k) = 0. - - pri_inu(k) = 0. - pni_inu(k) = 0. - pri_ihm(k) = 0. - pni_ihm(k) = 0. - pri_wfz(k) = 0. - pni_wfz(k) = 0. - pri_rfz(k) = 0. - pni_rfz(k) = 0. - pri_ide(k) = 0. - pni_ide(k) = 0. - pri_rci(k) = 0. - pni_rci(k) = 0. - pni_sci(k) = 0. - pni_iau(k) = 0. - - prs_iau(k) = 0. - prs_sci(k) = 0. - prs_rcs(k) = 0. - prs_scw(k) = 0. - prs_sde(k) = 0. - prs_ihm(k) = 0. - prs_ide(k) = 0. - - prg_scw(k) = 0. - prg_rfz(k) = 0. - prg_gde(k) = 0. - prg_gcw(k) = 0. - prg_rci(k) = 0. - prg_rcs(k) = 0. - prg_rcg(k) = 0. - prg_ihm(k) = 0. - enddo - -!+---+-----------------------------------------------------------------+ -!..Put column of data into local arrays. -!+---+-----------------------------------------------------------------+ - do k = kts, kte - temp(k) = t1d(k) - qv(k) = MAX(1.E-10, qv1d(k)) - pres(k) = p1d(k) - rho(k) = 0.622*pres(k)/(RR2*temp(k)*(qv(k)+0.622)) - if (qc1d(k) .gt. R1) then - no_micro = .false. - rc(k) = qc1d(k)*rho(k) - L_qc(k) = .true. - else - qc1d(k) = 0.0 - rc(k) = R1 - L_qc(k) = .false. - endif - if (qi1d(k) .gt. R1) then - no_micro = .false. - ri(k) = qi1d(k)*rho(k) - ni(k) = MAX(R2, ni1d(k)*rho(k)) - L_qi(k) = .true. - lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi - ilami = 1./lami - xDi = (bm_i + mu_i + 1.) * ilami - if (xDi.lt. 20.E-6) then - lami = cie(2)/20.E-6 - ni(k) = MIN(250.D3, cig(1)*oig2*ri(k)/am_i*lami**bm_i) - elseif (xDi.gt. 300.E-6) then - lami = cie(2)/300.E-6 - ni(k) = cig(1)*oig2*ri(k)/am_i*lami**bm_i - endif - else - qi1d(k) = 0.0 - ni1d(k) = 0.0 - ri(k) = R1 - ni(k) = R2 - L_qi(k) = .false. - endif - - mvd_r(k) = 0.0 ! must be initialized or a later test can crash where qr1d(k)<=R1 - if (qr1d(k) .gt. R1) then - no_micro = .false. - rr(k) = qr1d(k)*rho(k) - nr(k) = MAX(R2, nr1d(k)*rho(k)) - L_qr(k) = .true. - lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr - mvd_r(k) = (3.0 + mu_r + 0.672) / lamr - if (mvd_r(k) .gt. 2.5E-3) then - mvd_r(k) = 2.5E-3 - lamr = (3.0 + mu_r + 0.672) / mvd_r(k) - nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r - elseif (mvd_r(k) .lt. D0r*0.75) then - mvd_r(k) = D0r*0.75 - lamr = (3.0 + mu_r + 0.672) / mvd_r(k) - nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r - endif - else - qr1d(k) = 0.0 - nr1d(k) = 0.0 - rr(k) = R1 - nr(k) = R2 - L_qr(k) = .false. - endif - if (qs1d(k) .gt. R1) then - no_micro = .false. - rs(k) = qs1d(k)*rho(k) - L_qs(k) = .true. - else - qs1d(k) = 0.0 - rs(k) = R1 - L_qs(k) = .false. - endif - if (qg1d(k) .gt. R1) then - no_micro = .false. - rg(k) = qg1d(k)*rho(k) - L_qg(k) = .true. - else - qg1d(k) = 0.0 - rg(k) = R1 - L_qg(k) = .false. - endif - enddo - - -!+---+-----------------------------------------------------------------+ -!..Derive various thermodynamic variables frequently used. -!.. Saturation vapor pressure (mixing ratio) over liquid/ice comes from -!.. Flatau et al. 1992; enthalpy (latent heat) of vaporization from -!.. Bohren & Albrecht 1998; others from Pruppacher & Klett 1978. -!+---+-----------------------------------------------------------------+ - do k = kts, kte - tempc = temp(k) - 273.15 - rhof(k) = SQRT(RHO_NOT/rho(k)) - rhof2(k) = SQRT(rhof(k)) - qvs(k) = rslf(pres(k), temp(k)) - delQvs(k) = MAX(0.0, rslf(pres(k), 273.15)-qv(k)) - if (tempc .le. 0.0) then - qvsi(k) = rsif(pres(k), temp(k)) - else - qvsi(k) = qvs(k) - endif - satw(k) = qv(k)/qvs(k) - sati(k) = qv(k)/qvsi(k) - ssatw(k) = satw(k) - 1. - ssati(k) = sati(k) - 1. - if (abs(ssatw(k)).lt. eps) ssatw(k) = 0.0 - if (abs(ssati(k)).lt. eps) ssati(k) = 0.0 - if (no_micro .and. ssati(k).gt. 0.0) no_micro = .false. - diffu(k) = 2.11E-5*(temp(k)/273.15)**1.94 * (101325./pres(k)) - if (tempc .ge. 0.0) then - visco(k) = (1.718+0.0049*tempc)*1.0E-5 - else - visco(k) = (1.718+0.0049*tempc-1.2E-5*tempc*tempc)*1.0E-5 - endif - ocp(k) = 1./(Cp2*(1.+0.887*qv(k))) - vsc2(k) = SQRT(rho(k)/visco(k)) - lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc - tcond(k) = (5.69 + 0.0168*tempc)*1.0E-5 * 418.936 - enddo - -!+---+-----------------------------------------------------------------+ -!..If no existing hydrometeor species and no chance to initiate ice or -!.. condense cloud water, just exit quickly! -!+---+-----------------------------------------------------------------+ - - if (no_micro) return - -!+---+-----------------------------------------------------------------+ -!..Calculate y-intercept, slope, and useful moments for snow. -!+---+-----------------------------------------------------------------+ - if (.not. iiwarm) then - do k = kts, kte - if (.not. L_qs(k)) CYCLE - tc0 = MIN(-0.1, temp(k)-273.15) - smob(k) = rs(k)*oams - -!..All other moments based on reference, 2nd moment. If bm_s.ne.2, -!.. then we must compute actual 2nd moment and use as reference. - if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then - smo2(k) = smob(k) - else - loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s & - + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 & - + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s & - + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 & - + sa(10)*bm_s*bm_s*bm_s - a_ = 10.0**loga_ - b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s & - + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 & - + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s & - + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 & - + sb(10)*bm_s*bm_s*bm_s - smo2(k) = (smob(k)/a_)**(1./b_) - endif - -!..Calculate 0th moment. Represents snow number concentration. - loga_ = sa(1) + sa(2)*tc0 + sa(5)*tc0*tc0 + sa(9)*tc0*tc0*tc0 - a_ = 10.0**loga_ - b_ = sb(1) + sb(2)*tc0 + sb(5)*tc0*tc0 + sb(9)*tc0*tc0*tc0 - smo0(k) = a_ * smo2(k)**b_ - -!..Calculate 1st moment. Useful for depositional growth and melting. - loga_ = sa(1) + sa(2)*tc0 + sa(3) & - + sa(4)*tc0 + sa(5)*tc0*tc0 & - + sa(6) + sa(7)*tc0*tc0 & - + sa(8)*tc0 + sa(9)*tc0*tc0*tc0 & - + sa(10) - a_ = 10.0**loga_ - b_ = sb(1)+ sb(2)*tc0 + sb(3) + sb(4)*tc0 & - + sb(5)*tc0*tc0 + sb(6) & - + sb(7)*tc0*tc0 + sb(8)*tc0 & - + sb(9)*tc0*tc0*tc0 + sb(10) - smo1(k) = a_ * smo2(k)**b_ - -!..Calculate bm_s+1 (th) moment. Useful for diameter calcs. - loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) & - + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 & - + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) & - + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 & - + sa(10)*cse(1)*cse(1)*cse(1) - a_ = 10.0**loga_ - b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) & - + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) & - + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) & - + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1) - smoc(k) = a_ * smo2(k)**b_ - -!..Calculate bv_s+2 (th) moment. Useful for riming. - loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(13) & - + sa(4)*tc0*cse(13) + sa(5)*tc0*tc0 & - + sa(6)*cse(13)*cse(13) + sa(7)*tc0*tc0*cse(13) & - + sa(8)*tc0*cse(13)*cse(13) + sa(9)*tc0*tc0*tc0 & - + sa(10)*cse(13)*cse(13)*cse(13) - a_ = 10.0**loga_ - b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(13) + sb(4)*tc0*cse(13) & - + sb(5)*tc0*tc0 + sb(6)*cse(13)*cse(13) & - + sb(7)*tc0*tc0*cse(13) + sb(8)*tc0*cse(13)*cse(13) & - + sb(9)*tc0*tc0*tc0 + sb(10)*cse(13)*cse(13)*cse(13) - smoe(k) = a_ * smo2(k)**b_ - -!..Calculate 1+(bv_s+1)/2 (th) moment. Useful for depositional growth. - loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(16) & - + sa(4)*tc0*cse(16) + sa(5)*tc0*tc0 & - + sa(6)*cse(16)*cse(16) + sa(7)*tc0*tc0*cse(16) & - + sa(8)*tc0*cse(16)*cse(16) + sa(9)*tc0*tc0*tc0 & - + sa(10)*cse(16)*cse(16)*cse(16) - a_ = 10.0**loga_ - b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(16) + sb(4)*tc0*cse(16) & - + sb(5)*tc0*tc0 + sb(6)*cse(16)*cse(16) & - + sb(7)*tc0*tc0*cse(16) + sb(8)*tc0*cse(16)*cse(16) & - + sb(9)*tc0*tc0*tc0 + sb(10)*cse(16)*cse(16)*cse(16) - smof(k) = a_ * smo2(k)**b_ - - enddo - -!+---+-----------------------------------------------------------------+ -!..Calculate y-intercept, slope values for graupel. -!+---+-----------------------------------------------------------------+ - N0_min = gonv_max - do k = kte, kts, -1 - if (temp(k).lt.270.65 .and. L_qr(k) .and. mvd_r(k).gt.100.E-6) then - xslw1 = 4.01 + alog10(mvd_r(k)) - else - xslw1 = 0.01 - endif - ygra1 = 4.31 + alog10(max(5.E-5, rg(k))) - zans1 = 3.1 + (100./(300.*xslw1*ygra1/(10./xslw1+1.+0.25*ygra1)+30.+10.*ygra1)) - N0_exp = 10.**(zans1) - N0_exp = MAX(DBLE(gonv_min), MIN(N0_exp, DBLE(gonv_max))) - N0_min = MIN(N0_exp, N0_min) - N0_exp = N0_min - lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1 - lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg - ilamg(k) = 1./lamg - N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2) -!+---+-----------------------------------------------------------------+ -! if( debug_flag .and. k.lt.42) then -! if (k.eq.41) write(mp_debug,*) 'DEBUG-GT: K, zans1, rc, rr, rg, N0_g' -! if (k.eq.41) CALL wrf_debug(0, mp_debug) -! write(mp_debug, 'a, i2, 1x, f6.3, 1x, 4(1x,e13.6,1x)') & -! ' GT ', k, zans1, rc(k), rr(k), rg(k), N0_g(k) -! CALL wrf_debug(0, mp_debug) -! endif -!+---+-----------------------------------------------------------------+ - enddo - - endif - -!+---+-----------------------------------------------------------------+ -!..Calculate y-intercept, slope values for rain. -!+---+-----------------------------------------------------------------+ - do k = kte, kts, -1 - lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr - ilamr(k) = 1./lamr - mvd_r(k) = (3.0 + mu_r + 0.672) / lamr - N0_r(k) = nr(k)*org2*lamr**cre(2) - enddo - -!+---+-----------------------------------------------------------------+ -!..Compute warm-rain process terms (except evap done later). -!+---+-----------------------------------------------------------------+ - - do k = kts, kte - -!..Rain self-collection follows Seifert, 1994 and drop break-up -!.. follows Verlinde and Cotton, 1993. RAIN2M - if (L_qr(k) .and. mvd_r(k).gt. D0r) then -!-GT Ef_rr = 1.0 -!-GT if (mvd_r(k) .gt. 1500.0E-6) then - Ef_rr = 2.0 - EXP(2300.0*(mvd_r(k)-1600.0E-6)) -!-GT endif - pnr_rcr(k) = Ef_rr * 4.*nr(k)*rr(k) - endif - - mvd_c(k) = D0c - if (.not. L_qc(k)) CYCLE - xDc = MAX(D0c*1.E6, ((rc(k)/(am_r*Nt_c))**obmr) * 1.E6) - lamc = (Nt_c*am_r* ccg(2) * ocg1 / rc(k))**obmr - mvd_c(k) = (3.0+mu_c+0.672) / lamc - -!..Autoconversion follows Berry & Reinhardt (1974) with characteristic -!.. diameters correctly computed from gamma distrib of cloud droplets. - if (rc(k).gt. 0.01e-3) then - Dc_g = ((ccg(3)*ocg2)**obmr / lamc) * 1.E6 - Dc_b = (xDc*xDc*xDc*Dc_g*Dc_g*Dc_g - xDc*xDc*xDc*xDc*xDc*xDc) & - **(1./6.) - zeta1 = 0.5*((6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4) & - + abs(6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4)) - zeta = 0.027*rc(k)*zeta1 - taud = 0.5*((0.5*Dc_b - 7.5) + abs(0.5*Dc_b - 7.5)) + R1 - tau = 3.72/(rc(k)*taud) - prr_wau(k) = zeta/tau - prr_wau(k) = MIN(DBLE(rc(k)*odts), prr_wau(k)) - pnr_wau(k) = prr_wau(k) / (am_r*mu_c*D0r*D0r*D0r) ! RAIN2M - endif - -!..Rain collecting cloud water. In CE, assume Dc<1). Either way, only bother to do sedimentation below -!.. 1st level that contains any sedimenting particles (k=ksed1 on down). -!.. New in v3.0+ is computing separate for rain, ice, snow, and -!.. graupel species thus making code faster with credit to J. Schmidt. -!+---+-----------------------------------------------------------------+ - nstep = 0 - onstep(:) = 1.0 - ksed1(:) = 1 - do k = kte+1, kts, -1 - vtrk(k) = 0. - vtnrk(k) = 0. - vtik(k) = 0. - vtnik(k) = 0. - vtsk(k) = 0. - vtgk(k) = 0. - enddo - do k = kte, kts, -1 - vtr = 0. - rhof(k) = SQRT(RHO_NOT/rho(k)) - - if (rr(k).gt. R1) then - lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr - vtr = rhof(k)*av_r*crg(6)*org3 * lamr**cre(3) & - *((lamr+fv_r)**(-cre(6))) - vtrk(k) = vtr -! First below is technically correct: -! vtr = rhof(k)*av_r*crg(5)*org2 * lamr**cre(2) & -! *((lamr+fv_r)**(-cre(5))) -! Test: make number fall faster (but still slower than mass) -! Goal: less prominent size sorting - vtr = rhof(k)*av_r*crg(7)/crg(12) * lamr**cre(12) & - *((lamr+fv_r)**(-cre(7))) - vtnrk(k) = vtr - else - vtrk(k) = vtrk(k+1) - vtnrk(k) = vtnrk(k+1) - endif - - if (MAX(vtrk(k),vtnrk(k)) .gt. 1.E-3) then - ksed1(1) = MAX(ksed1(1), k) - delta_tp = dzq(k)/(MAX(vtrk(k),vtnrk(k))) - nstep = MAX(nstep, INT(DT/delta_tp + 1.)) - endif - enddo - if (ksed1(1) .eq. kte) ksed1(1) = kte-1 - if (nstep .gt. 0) onstep(1) = 1./REAL(nstep) - -!+---+-----------------------------------------------------------------+ - - if (.not. iiwarm) then - - nstep = 0 - do k = kte, kts, -1 - vti = 0. - - if (ri(k).gt. R1) then - lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi - ilami = 1./lami - vti = rhof(k)*av_i*cig(3)*oig2 * ilami**bv_i - vtik(k) = vti -! First below is technically correct: -! vti = rhof(k)*av_i*cig(4)*oig1 * ilami**bv_i -! Goal: less prominent size sorting - vti = rhof(k)*av_i*cig(6)/cig(7) * ilami**bv_i - vtnik(k) = vti - else - vtik(k) = vtik(k+1) - vtnik(k) = vtnik(k+1) - endif - - if (vtik(k) .gt. 1.E-3) then - ksed1(2) = MAX(ksed1(2), k) - delta_tp = dzq(k)/vtik(k) - nstep = MAX(nstep, INT(DT/delta_tp + 1.)) - endif - enddo - if (ksed1(2) .eq. kte) ksed1(2) = kte-1 - if (nstep .gt. 0) onstep(2) = 1./REAL(nstep) - -!+---+-----------------------------------------------------------------+ - - nstep = 0 - do k = kte, kts, -1 - vts = 0. - - if (rs(k).gt. R1) then - xDs = smoc(k) / smob(k) - Mrat = 1./xDs - ils1 = 1./(Mrat*Lam0 + fv_s) - ils2 = 1./(Mrat*Lam1 + fv_s) - t1_vts = Kap0*csg(4)*ils1**cse(4) - t2_vts = Kap1*Mrat**mu_s*csg(10)*ils2**cse(10) - ils1 = 1./(Mrat*Lam0) - ils2 = 1./(Mrat*Lam1) - t3_vts = Kap0*csg(1)*ils1**cse(1) - t4_vts = Kap1*Mrat**mu_s*csg(7)*ils2**cse(7) - vts = rhof(k)*av_s * (t1_vts+t2_vts)/(t3_vts+t4_vts) - if (temp(k).gt. T_0) then - vtsk(k) = MAX(vts*vts_boost(k), vtrk(k)) - else - vtsk(k) = vts*vts_boost(k) - endif - else - vtsk(k) = vtsk(k+1) - endif - - if (vtsk(k) .gt. 1.E-3) then - ksed1(3) = MAX(ksed1(3), k) - delta_tp = dzq(k)/vtsk(k) - nstep = MAX(nstep, INT(DT/delta_tp + 1.)) - endif - enddo - if (ksed1(3) .eq. kte) ksed1(3) = kte-1 - if (nstep .gt. 0) onstep(3) = 1./REAL(nstep) - -!+---+-----------------------------------------------------------------+ - - nstep = 0 - do k = kte, kts, -1 - vtg = 0. - - if (rg(k).gt. R1) then - vtg = rhof(k)*av_g*cgg(6)*ogg3 * ilamg(k)**bv_g - if (temp(k).gt. T_0) then - vtgk(k) = MAX(vtg, vtrk(k)) - else - vtgk(k) = vtg - endif - else - vtgk(k) = vtgk(k+1) - endif - - if (vtgk(k) .gt. 1.E-3) then - ksed1(4) = MAX(ksed1(4), k) - delta_tp = dzq(k)/vtgk(k) - nstep = MAX(nstep, INT(DT/delta_tp + 1.)) - endif - enddo - if (ksed1(4) .eq. kte) ksed1(4) = kte-1 - if (nstep .gt. 0) onstep(4) = 1./REAL(nstep) - endif - -!+---+-----------------------------------------------------------------+ -!..Sedimentation of mixing ratio is the integral of v(D)*m(D)*N(D)*dD, -!.. whereas neglect m(D) term for number concentration. Therefore, -!.. cloud ice has proper differential sedimentation. -!.. New in v3.0+ is computing separate for rain, ice, snow, and -!.. graupel species thus making code faster with credit to J. Schmidt. -!+---+-----------------------------------------------------------------+ - - nstep = NINT(1./onstep(1)) - do n = 1, nstep - do k = kte, kts, -1 - sed_r(k) = vtrk(k)*rr(k) - sed_n(k) = vtnrk(k)*nr(k) - enddo - k = kte - odzq = 1./dzq(k) - orho = 1./rho(k) - qrten(k) = qrten(k) - sed_r(k)*odzq*onstep(1)*orho - nrten(k) = nrten(k) - sed_n(k)*odzq*onstep(1)*orho - rr(k) = MAX(R1, rr(k) - sed_r(k)*odzq*DT*onstep(1)) - nr(k) = MAX(R2, nr(k) - sed_n(k)*odzq*DT*onstep(1)) - do k = ksed1(1), kts, -1 - odzq = 1./dzq(k) - orho = 1./rho(k) - qrten(k) = qrten(k) + (sed_r(k+1)-sed_r(k)) & - *odzq*onstep(1)*orho - nrten(k) = nrten(k) + (sed_n(k+1)-sed_n(k)) & - *odzq*onstep(1)*orho - rr(k) = MAX(R1, rr(k) + (sed_r(k+1)-sed_r(k)) & - *odzq*DT*onstep(1)) - nr(k) = MAX(R2, nr(k) + (sed_n(k+1)-sed_n(k)) & - *odzq*DT*onstep(1)) - enddo - - if (rr(kts).gt.R1*10.) & - pptrain = pptrain + sed_r(kts)*DT*onstep(1) - enddo - -!+---+-----------------------------------------------------------------+ - - nstep = NINT(1./onstep(2)) - do n = 1, nstep - do k = kte, kts, -1 - sed_i(k) = vtik(k)*ri(k) - sed_n(k) = vtnik(k)*ni(k) - enddo - k = kte - odzq = 1./dzq(k) - orho = 1./rho(k) - qiten(k) = qiten(k) - sed_i(k)*odzq*onstep(2)*orho - niten(k) = niten(k) - sed_n(k)*odzq*onstep(2)*orho - ri(k) = MAX(R1, ri(k) - sed_i(k)*odzq*DT*onstep(2)) - ni(k) = MAX(R2, ni(k) - sed_n(k)*odzq*DT*onstep(2)) - do k = ksed1(2), kts, -1 - odzq = 1./dzq(k) - orho = 1./rho(k) - qiten(k) = qiten(k) + (sed_i(k+1)-sed_i(k)) & - *odzq*onstep(2)*orho - niten(k) = niten(k) + (sed_n(k+1)-sed_n(k)) & - *odzq*onstep(2)*orho - ri(k) = MAX(R1, ri(k) + (sed_i(k+1)-sed_i(k)) & - *odzq*DT*onstep(2)) - ni(k) = MAX(R2, ni(k) + (sed_n(k+1)-sed_n(k)) & - *odzq*DT*onstep(2)) - enddo - - if (ri(kts).gt.R1*10.) & - pptice = pptice + sed_i(kts)*DT*onstep(2) - enddo - -!+---+-----------------------------------------------------------------+ - - nstep = NINT(1./onstep(3)) - do n = 1, nstep - do k = kte, kts, -1 - sed_s(k) = vtsk(k)*rs(k) - enddo - k = kte - odzq = 1./dzq(k) - orho = 1./rho(k) - qsten(k) = qsten(k) - sed_s(k)*odzq*onstep(3)*orho - rs(k) = MAX(R1, rs(k) - sed_s(k)*odzq*DT*onstep(3)) - do k = ksed1(3), kts, -1 - odzq = 1./dzq(k) - orho = 1./rho(k) - qsten(k) = qsten(k) + (sed_s(k+1)-sed_s(k)) & - *odzq*onstep(3)*orho - rs(k) = MAX(R1, rs(k) + (sed_s(k+1)-sed_s(k)) & - *odzq*DT*onstep(3)) - enddo - - if (rs(kts).gt.R1*10.) & - pptsnow = pptsnow + sed_s(kts)*DT*onstep(3) - enddo - -!+---+-----------------------------------------------------------------+ - - nstep = NINT(1./onstep(4)) - do n = 1, nstep - do k = kte, kts, -1 - sed_g(k) = vtgk(k)*rg(k) - enddo - k = kte - odzq = 1./dzq(k) - orho = 1./rho(k) - qgten(k) = qgten(k) - sed_g(k)*odzq*onstep(4)*orho - rg(k) = MAX(R1, rg(k) - sed_g(k)*odzq*DT*onstep(4)) - do k = ksed1(4), kts, -1 - odzq = 1./dzq(k) - orho = 1./rho(k) - qgten(k) = qgten(k) + (sed_g(k+1)-sed_g(k)) & - *odzq*onstep(4)*orho - rg(k) = MAX(R1, rg(k) + (sed_g(k+1)-sed_g(k)) & - *odzq*DT*onstep(4)) - enddo - - if (rg(kts).gt.R1*10.) & - pptgraul = pptgraul + sed_g(kts)*DT*onstep(4) - enddo - -!+---+-----------------------------------------------------------------+ -!.. Instantly melt any cloud ice into cloud water if above 0C and -!.. instantly freeze any cloud water found below HGFR. -!+---+-----------------------------------------------------------------+ - if (.not. iiwarm) then - do k = kts, kte - xri = MAX(0.0, qi1d(k) + qiten(k)*DT) - if ( (temp(k).gt. T_0) .and. (xri.gt. 0.0) ) then - qcten(k) = qcten(k) + xri*odt - qiten(k) = qiten(k) - xri*odt - niten(k) = -ni1d(k)*odt - tten(k) = tten(k) - lfus*ocp(k)*xri*odt*(1-IFDRY) - endif - - xrc = MAX(0.0, qc1d(k) + qcten(k)*DT) - if ( (temp(k).lt. HGFR) .and. (xrc.gt. 0.0) ) then - lfus2 = lsub - lvap(k) - qiten(k) = qiten(k) + xrc*odt - niten(k) = niten(k) + xrc/xm0i * odt - qcten(k) = qcten(k) - xrc*odt - tten(k) = tten(k) + lfus2*ocp(k)*xrc*odt*(1-IFDRY) - endif - enddo - endif - -!+---+-----------------------------------------------------------------+ -!.. All tendencies computed, apply and pass back final values to parent. -!+---+-----------------------------------------------------------------+ - do k = kts, kte - t1d(k) = t1d(k) + tten(k)*DT - qv1d(k) = MAX(1.E-10, qv1d(k) + qvten(k)*DT) - qc1d(k) = qc1d(k) + qcten(k)*DT - if (qc1d(k) .le. R1) qc1d(k) = 0.0 - qi1d(k) = qi1d(k) + qiten(k)*DT - ni1d(k) = MAX(R2/rho(k), ni1d(k) + niten(k)*DT) - if (qi1d(k) .le. R1) then - qi1d(k) = 0.0 - ni1d(k) = 0.0 - else - lami = (am_i*cig(2)*oig1*ni1d(k)/qi1d(k))**obmi - ilami = 1./lami - xDi = (bm_i + mu_i + 1.) * ilami - if (xDi.lt. 20.E-6) then - lami = cie(2)/20.E-6 - elseif (xDi.gt. 300.E-6) then - lami = cie(2)/300.E-6 - endif - ni1d(k) = MIN(cig(1)*oig2*qi1d(k)/am_i*lami**bm_i, & - 250.D3/rho(k)) - endif - qr1d(k) = qr1d(k) + qrten(k)*DT - nr1d(k) = MAX(R2/rho(k), nr1d(k) + nrten(k)*DT) - if (qr1d(k) .le. R1) then - qr1d(k) = 0.0 - nr1d(k) = 0.0 - else - lamr = (am_r*crg(3)*org2*nr1d(k)/qr1d(k))**obmr - mvd_r(k) = (3.0 + mu_r + 0.672) / lamr - if (mvd_r(k) .gt. 2.5E-3) then - mvd_r(k) = 2.5E-3 - elseif (mvd_r(k) .lt. D0r*0.75) then - mvd_r(k) = D0r*0.75 - endif - lamr = (3.0 + mu_r + 0.672) / mvd_r(k) - nr1d(k) = crg(2)*org3*qr1d(k)*lamr**bm_r / am_r - endif - qs1d(k) = qs1d(k) + qsten(k)*DT - if (qs1d(k) .le. R1) qs1d(k) = 0.0 - qg1d(k) = qg1d(k) + qgten(k)*DT - if (qg1d(k) .le. R1) qg1d(k) = 0.0 - enddo - - end subroutine mp_thompson -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Creation of the lookup tables and support functions found below here. -!+---+-----------------------------------------------------------------+ -!..Rain collecting graupel (and inverse). Explicit CE integration. -!+---+-----------------------------------------------------------------+ - - subroutine qr_acr_qg - - implicit none - -!..Local variables - INTEGER:: i, j, k, m, n, n2 - INTEGER:: km, km_s, km_e - DOUBLE PRECISION, DIMENSION(nbg):: vg, N_g - DOUBLE PRECISION, DIMENSION(nbr):: vr, N_r - DOUBLE PRECISION:: N0_r, N0_g, lam_exp, lamg, lamr - DOUBLE PRECISION:: massg, massr, dvg, dvr, t1, t2, z1, z2, y1, y2 - logical :: lexist, lopen - integer :: good - - good = 0 - - - INQUIRE(FILE="qr_acr_qg_mpt.dat",EXIST=lexist) - IF ( lexist ) THEN - if (this_image()==1) print *, "ThompMP: read qr_acr_qg_mpt.dat instead of computing" - OPEN(63,file="qr_acr_qg_mpt.dat",form="unformatted",err=1234) - READ(63,err=1234) tcg_racg - READ(63,err=1234) tmr_racg - READ(63,err=1234) tcr_gacr - READ(63,err=1234) tmg_gacr - READ(63,err=1234) tnr_racg - READ(63,err=1234) tnr_gacr - good = 1 - 1234 CONTINUE - INQUIRE(63,opened=lopen) - IF (lopen) THEN - CLOSE(63) - ENDIF - - ENDIF - - if (good .NE. 1) then - - do n2 = 1, nbr - ! vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2)) - vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2) & - + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2) & - - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2) - enddo - do n = 1, nbg - vg(n) = av_g*Dg(n)**bv_g - enddo - - !..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for - !.. fortran indices. J. Michalakes, 2009Oct30. - - ! #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) - ! CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e ) - ! #else - km_s = 0 - km_e = ntb_r*ntb_r1 - 1 - ! #endif - - !$omp parallel default(shared) & - !$omp private(km,i,j,k,m,n,n2,lam_exp,lamr,N0_r,N_r,lamg,N_g,N0_g,t1,t2,z1,z2,y1,y2,massr,massg,dvg,dvr) & - !$omp shared(tcg_racg,tmr_racg,tcr_gacr,tmg_gacr,tnr_racg,tnr_gacr,mu_r,ef_rs,am_s) & - !$omp firstprivate(crg,cre,cge,cgg,ore1,oge1,org1,org2,ogg2,ogg1,obmg,obmr) & - !$omp firstprivate(km_s,km_e,Dr,Dg,dtg,dtr,vr,vg) - !$omp do - do km = km_s, km_e - m = km / ntb_r1 + 1 - k = mod( km , ntb_r1 ) + 1 - - lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1 - lamr = lam_exp * (crg(3)*org2*org1)**obmr - N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2) - do n2 = 1, nbr - N_r(n2) = N0_r*Dr(n2)**mu_r *DEXP(-lamr*Dr(n2))*dtr(n2) - enddo - - do j = 1, ntb_g - do i = 1, ntb_g1 - lam_exp = (N0g_exp(i)*am_g*cgg(1)/r_g(j))**oge1 - lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg - N0_g = N0g_exp(i)/(cgg(2)*lam_exp) * lamg**cge(2) - do n = 1, nbg - N_g(n) = N0_g*Dg(n)**mu_g * DEXP(-lamg*Dg(n))*dtg(n) - enddo - - t1 = 0.0d0 - t2 = 0.0d0 - z1 = 0.0d0 - z2 = 0.0d0 - y1 = 0.0d0 - y2 = 0.0d0 - do n2 = 1, nbr - massr = am_r * Dr(n2)**bm_r - do n = 1, nbg - massg = am_g * Dg(n)**bm_g - - dvg = 0.5d0*((vr(n2) - vg(n)) + DABS(vr(n2)-vg(n))) - dvr = 0.5d0*((vg(n) - vr(n2)) + DABS(vg(n)-vr(n2))) - - t1 = t1+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvg*massg * N_g(n)* N_r(n2) - z1 = z1+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvg*massr * N_g(n)* N_r(n2) - y1 = y1+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvg * N_g(n)* N_r(n2) - - t2 = t2+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvr*massr * N_g(n)* N_r(n2) - y2 = y2+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvr * N_g(n)* N_r(n2) - z2 = z2+ PI2*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & - *dvr*massg * N_g(n)* N_r(n2) - enddo - 97 continue - enddo - tcg_racg(i,j,k,m) = t1 - tmr_racg(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0) - tcr_gacr(i,j,k,m) = t2 - tmg_gacr(i,j,k,m) = z2 - tnr_racg(i,j,k,m) = y1 - tnr_gacr(i,j,k,m) = y2 - enddo - enddo - enddo - !$omp end do - !$omp end parallel - IF ( this_image()==1 ) THEN - print *, "Writing qr_acr_qg_mpt.dat in Thompson MP init" - OPEN(63,file="qr_acr_qg_mpt.dat",form="unformatted",err=9234) - WRITE(63,err=9234) tcg_racg - WRITE(63,err=9234) tmr_racg - WRITE(63,err=9234) tcr_gacr - WRITE(63,err=9234) tmg_gacr - WRITE(63,err=9234) tnr_racg - WRITE(63,err=9234) tnr_gacr - CLOSE(63) - RETURN ! ----- RETURN - 9234 CONTINUE - print *, ("Error writing qr_acr_qg_mpt.dat") - ENDIF - - endif - -!..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30). - -! #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) - ! CALL wrf_dm_gatherv(tcg_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tmr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tcr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tmg_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) -! #endif - - - end subroutine qr_acr_qg -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Rain collecting snow (and inverse). Explicit CE integration. -!+---+-----------------------------------------------------------------+ - - subroutine qr_acr_qs - - implicit none -!..Local variables - INTEGER:: i, j, k, m, n, n2 - INTEGER:: km, km_s, km_e - DOUBLE PRECISION, DIMENSION(nbr):: vr, D1, N_r - DOUBLE PRECISION, DIMENSION(nbs):: vs, N_s - DOUBLE PRECISION:: loga_, a_, b_, second, M0, M2, M3, Mrat, oM3 - DOUBLE PRECISION:: N0_r, lam_exp, lamr, slam1, slam2 - DOUBLE PRECISION:: dvs, dvr, masss, massr - DOUBLE PRECISION:: t1, t2, t3, t4, z1, z2, z3, z4 - DOUBLE PRECISION:: y1, y2, y3, y4 - LOGICAL lexist,lopen - INTEGER :: good - ! LOGICAL, EXTERNAL :: wrf_dm_on_monitor - -!+---+ - - ! CALL nl_get_force_read_thompson(1,force_read_thompson) - ! CALL nl_get_write_thompson_tables(1,write_thompson_tables) - - good = 0 - INQUIRE(FILE="qr_acr_qs_mpt.dat",EXIST=lexist) - IF ( lexist ) THEN - IF ( this_image() == 1 ) print *, "ThompMP: read qr_acr_qs_mpt.dat instead of computing" - OPEN(63,file="qr_acr_qs_mpt.dat",form="unformatted",err=1234) - READ(63,err=1234)tcs_racs1 - READ(63,err=1234)tmr_racs1 - READ(63,err=1234)tcs_racs2 - READ(63,err=1234)tmr_racs2 - READ(63,err=1234)tcr_sacr1 - READ(63,err=1234)tms_sacr1 - READ(63,err=1234)tcr_sacr2 - READ(63,err=1234)tms_sacr2 - READ(63,err=1234)tnr_racs1 - READ(63,err=1234)tnr_racs2 - READ(63,err=1234)tnr_sacr1 - READ(63,err=1234)tnr_sacr2 - good = 1 - 1234 CONTINUE - INQUIRE(63,opened=lopen) - IF (lopen) THEN - CLOSE(63) - ENDIF - ENDIF - - if (good .NE. 1) then - if (this_image()==1) print *, "ThompMP: computing qr_acr_qs" - !+---+ - do n2 = 1, nbr - ! vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2)) - vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2) & - + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2) & - - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2) - D1(n2) = (vr(n2)/av_s)**(1./bv_s) - enddo - do n = 1, nbs - vs(n) = 1.5*av_s*Ds(n)**bv_s * DEXP(-fv_s*Ds(n)) - enddo - - !..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for - !.. fortran indices. J. Michalakes, 2009Oct30. - - ! #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) - ! CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e ) - ! #else - km_s = 0 - km_e = ntb_r*ntb_r1 - 1 - ! #endif - - !$omp parallel default(private) & - !$omp shared(tcs_racs1,tmr_racs1,tcs_racs2,tmr_racs2,tcr_sacr1,tms_sacr1)& - !$omp shared(tcr_sacr2,tms_sacr2,tnr_racs1,tnr_racs2,tnr_sacr1,tnr_sacr2,mu_r,ef_rs,am_s) & - !$omp private(second,a_,b_,n2,km,M2,M3,oM3,Mrat,M0,slam1,slam2,i,j,k,m,n,lam_exp,lamr,N0_r,N_r,loga_) & - !$omp private(t1,t2,t3,t4,z1,z2,z3,z4,y1,y2,y3,y4,N_s,massr,masss,dvs,dvr) & - !$omp firstprivate(km_s,km_e,vr,vs) & - !$omp firstprivate(Dr,dtr,dts,Ds,crg,cre,cse,ore1,org2,org1,obmr,oams) - !$omp do - do km = km_s, km_e - m = km / ntb_r1 + 1 - k = mod( km , ntb_r1 ) + 1 - - lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1 - lamr = lam_exp * (crg(3)*org2*org1)**obmr - N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2) - do n2 = 1, nbr - N_r(n2) = N0_r*Dr(n2)**mu_r * DEXP(-lamr*Dr(n2))*dtr(n2) - enddo - - do j = 1, ntb_t - do i = 1, ntb_s - - !..From the bm_s moment, compute plus one moment. If we are not - !.. using bm_s=2, then we must transform to the pure 2nd moment - !.. (variable called "second") and then to the bm_s+1 moment. - - M2 = r_s(i)*oams *1.0d0 - if (bm_s.gt.2.0-1.E-3 .and. bm_s.lt.2.0+1.E-3) then - loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*bm_s & - + sa(4)*Tc(j)*bm_s + sa(5)*Tc(j)*Tc(j) & - + sa(6)*bm_s*bm_s + sa(7)*Tc(j)*Tc(j)*bm_s & - + sa(8)*Tc(j)*bm_s*bm_s + sa(9)*Tc(j)*Tc(j)*Tc(j) & - + sa(10)*bm_s*bm_s*bm_s - a_ = 10.0**loga_ - b_ = sb(1) + sb(2)*Tc(j) + sb(3)*bm_s & - + sb(4)*Tc(j)*bm_s + sb(5)*Tc(j)*Tc(j) & - + sb(6)*bm_s*bm_s + sb(7)*Tc(j)*Tc(j)*bm_s & - + sb(8)*Tc(j)*bm_s*bm_s + sb(9)*Tc(j)*Tc(j)*Tc(j) & - + sb(10)*bm_s*bm_s*bm_s - second = (M2/a_)**(1./b_) - else - second = M2 - endif - - loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*cse(1) & - + sa(4)*Tc(j)*cse(1) + sa(5)*Tc(j)*Tc(j) & - + sa(6)*cse(1)*cse(1) + sa(7)*Tc(j)*Tc(j)*cse(1) & - + sa(8)*Tc(j)*cse(1)*cse(1) + sa(9)*Tc(j)*Tc(j)*Tc(j) & - + sa(10)*cse(1)*cse(1)*cse(1) - a_ = 10.0**loga_ - b_ = sb(1)+sb(2)*Tc(j)+sb(3)*cse(1) + sb(4)*Tc(j)*cse(1) & - + sb(5)*Tc(j)*Tc(j) + sb(6)*cse(1)*cse(1) & - + sb(7)*Tc(j)*Tc(j)*cse(1) + sb(8)*Tc(j)*cse(1)*cse(1) & - + sb(9)*Tc(j)*Tc(j)*Tc(j)+sb(10)*cse(1)*cse(1)*cse(1) - M3 = a_ * second**b_ - - oM3 = 1./M3 - Mrat = M2*(M2*oM3)*(M2*oM3)*(M2*oM3) - M0 = (M2*oM3)**mu_s - slam1 = M2 * oM3 * Lam0 - slam2 = M2 * oM3 * Lam1 - - do n = 1, nbs - N_s(n) = Mrat*(Kap0*DEXP(-slam1*Ds(n)) & - + Kap1*M0*Ds(n)**mu_s * DEXP(-slam2*Ds(n)))*dts(n) - enddo - - t1 = 0.0d0 - t2 = 0.0d0 - t3 = 0.0d0 - t4 = 0.0d0 - z1 = 0.0d0 - z2 = 0.0d0 - z3 = 0.0d0 - z4 = 0.0d0 - y1 = 0.0d0 - y2 = 0.0d0 - y3 = 0.0d0 - y4 = 0.0d0 - do n2 = 1, nbr - massr = am_r * Dr(n2)**bm_r - do n = 1, nbs - masss = am_s * Ds(n)**bm_s - - dvs = 0.5d0*((vr(n2) - vs(n)) + DABS(vr(n2)-vs(n))) - dvr = 0.5d0*((vs(n) - vr(n2)) + DABS(vs(n)-vr(n2))) - - if (massr .gt. 1.5*masss) then - t1 = t1+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs*masss * N_s(n)* N_r(n2) - z1 = z1+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs*massr * N_s(n)* N_r(n2) - y1 = y1+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs * N_s(n)* N_r(n2) - else - t3 = t3+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs*masss * N_s(n)* N_r(n2) - z3 = z3+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs*massr * N_s(n)* N_r(n2) - y3 = y3+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvs * N_s(n)* N_r(n2) - endif - - if (massr .gt. 1.5*masss) then - t2 = t2+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr*massr * N_s(n)* N_r(n2) - y2 = y2+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr * N_s(n)* N_r(n2) - z2 = z2+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr*masss * N_s(n)* N_r(n2) - else - t4 = t4+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr*massr * N_s(n)* N_r(n2) - y4 = y4+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr * N_s(n)* N_r(n2) - z4 = z4+ PI2*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & - *dvr*masss * N_s(n)* N_r(n2) - endif - - enddo - enddo - tcs_racs1(i,j,k,m) = t1 - tmr_racs1(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0) - tcs_racs2(i,j,k,m) = t3 - tmr_racs2(i,j,k,m) = z3 - tcr_sacr1(i,j,k,m) = t2 - tms_sacr1(i,j,k,m) = z2 - tcr_sacr2(i,j,k,m) = t4 - tms_sacr2(i,j,k,m) = z4 - tnr_racs1(i,j,k,m) = y1 - tnr_racs2(i,j,k,m) = y3 - tnr_sacr1(i,j,k,m) = y2 - tnr_sacr2(i,j,k,m) = y4 - enddo - enddo - enddo - !$omp end do - !$omp end parallel - - IF ( this_image()==1 ) THEN - print *, "Writing qr_acr_qs_mpt.dat in Thompson MP init" - OPEN(63,file="qr_acr_qs_mpt.dat",form="unformatted",err=9234) - WRITE(63,err=9234)tcs_racs1 - WRITE(63,err=9234)tmr_racs1 - WRITE(63,err=9234)tcs_racs2 - WRITE(63,err=9234)tmr_racs2 - WRITE(63,err=9234)tcr_sacr1 - WRITE(63,err=9234)tms_sacr1 - WRITE(63,err=9234)tcr_sacr2 - WRITE(63,err=9234)tms_sacr2 - WRITE(63,err=9234)tnr_racs1 - WRITE(63,err=9234)tnr_racs2 - WRITE(63,err=9234)tnr_sacr1 - WRITE(63,err=9234)tnr_sacr2 - CLOSE(63) - RETURN ! ----- RETURN - 9234 CONTINUE - print*, "Error writing qr_acr_qs_mpt.dat" - ENDIF - ENDIF - -!..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30). - -! #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) - ! CALL wrf_dm_gatherv(tcs_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tmr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tcs_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tmr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tcr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tms_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tcr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tms_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) - ! CALL wrf_dm_gatherv(tnr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) -! #endif - - - end subroutine qr_acr_qs -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!..This is a literal adaptation of Bigg (1954) probability of drops of -!..a particular volume freezing. Given this probability, simply freeze -!..the proportion of drops summing their masses. -!+---+-----------------------------------------------------------------+ - - subroutine freezeH2O - - implicit none -!..Local variables - INTEGER:: i, j, k, n, n2 - DOUBLE PRECISION, DIMENSION(nbr):: N_r, massr - DOUBLE PRECISION, DIMENSION(nbc):: N_c, massc - DOUBLE PRECISION:: sum1, sum2, sumn1, sumn2, & - prob, vol, Texp, orho_w, & - lam_exp, lamr, N0_r, lamc, N0_c, y - LOGICAL lexist,lopen - INTEGER :: good - ! LOGICAL, EXTERNAL :: wrf_dm_on_monitor - -!+---+ - - good = 0 - ! IF ( this_image() == 1 ) THEN - INQUIRE(FILE="freezeH2O_mpt.dat",EXIST=lexist) - IF ( lexist ) THEN - IF ( this_image() == 1 ) print *, "ThompMP: read freezeH2O_mpt.dat instead of computing" - OPEN(63,file="freezeH2O_mpt.dat",form="unformatted",err=1234) - READ(63,err=1234)tpi_qrfz - READ(63,err=1234)tni_qrfz - READ(63,err=1234)tpg_qrfz - READ(63,err=1234)tnr_qrfz - READ(63,err=1234)tpi_qcfz - READ(63,err=1234)tni_qcfz - good = 1 - 1234 CONTINUE - INQUIRE(63,opened=lopen) - IF (lopen) THEN - CLOSE(63) - endif - ENDIF - - - IF ( good .NE. 1 ) THEN - if (this_image()==1) print *, "ThompMP: computing freezeH2O" - !+---+ - orho_w = 1./rho_w - - do n2 = 1, nbr - massr(n2) = am_r*Dr(n2)**bm_r - enddo - do n = 1, nbc - massc(n) = am_r*Dc(n)**bm_r - enddo - - !..Freeze water (smallest drops become cloud ice, otherwise graupel). - do k = 1, 45 - ! print*, ' Freezing water for temp = ', -k - ! ++ trude, add tadjust, so to chane temperature for where Bigg freezing starts. Follow approach in WRFV3.6 with IN - Texp = DEXP( DFLOAT(k) -t_adjust*1.0D0) - 1.0D0 ! NB Trude. Check for when texp is negative..... - ! Texp = DEXP( DFLOAT(k) ) - 1.0D0 - ! -- trude - do j = 1, ntb_r1 - do i = 1, ntb_r - lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(i))**ore1 - lamr = lam_exp * (crg(3)*org2*org1)**obmr - N0_r = N0r_exp(j)/(crg(2)*lam_exp) * lamr**cre(2) - sum1 = 0.0d0 - sum2 = 0.0d0 - sumn1 = 0.0d0 - sumn2 = 0.0d0 - do n2 = nbr, 1, -1 - N_r(n2) = N0_r*Dr(n2)**mu_r*DEXP(-lamr*Dr(n2))*dtr(n2) - vol = massr(n2)*orho_w - prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp) - !++ trude - prob = MAX(prob, 0.0d0 ) - ! -- trude - if (massr(n2) .lt. xm0g) then - sumn1 = sumn1 + prob*N_r(n2) - sum1 = sum1 + prob*N_r(n2)*massr(n2) - else - sumn2 = sumn2 + prob*N_r(n2) - sum2 = sum2 + prob*N_r(n2)*massr(n2) - endif - if ((sum1+sum2) .ge. r_r(i)) EXIT - enddo - tpi_qrfz(i,j,k) = sum1 - tni_qrfz(i,j,k) = sumn1 - tpg_qrfz(i,j,k) = sum2 - tnr_qrfz(i,j,k) = sumn2 - enddo - enddo - do i = 1, ntb_c - lamc = 1.0D-6 * (Nt_c*am_r* ccg(2) * ocg1 / r_c(i))**obmr - N0_c = 1.0D-18 * Nt_c*ocg1 * lamc**cce(1) - sum1 = 0.0d0 - sumn2 = 0.0d0 - do n = nbc, 1, -1 - y = Dc(n)*1.0D6 - vol = massc(n)*orho_w - prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp) - !++ trude - prob = MAX(prob, 0.0d0 ) - ! -- trude - N_c(n) = N0_c* y**mu_c * EXP(-lamc*y)*dtc(n) - N_c(n) = 1.0D24 * N_c(n) - sumn2 = sumn2 + prob*N_c(n) - sum1 = sum1 + prob*N_c(n)*massc(n) - if (sum1 .ge. r_c(i)) EXIT - enddo - tpi_qcfz(i,k) = sum1 - tni_qcfz(i,k) = sumn2 - enddo - enddo - - IF ( this_image() == 1 ) THEN - print *, "Writing freezeH2O_mpt.dat in Thompson MP init" - OPEN(63,file="freezeH2O_mpt.dat",form="unformatted",err=9234) - WRITE(63,err=9234)tpi_qrfz - WRITE(63,err=9234)tni_qrfz - WRITE(63,err=9234)tpg_qrfz - WRITE(63,err=9234)tnr_qrfz - WRITE(63,err=9234)tpi_qcfz - WRITE(63,err=9234)tni_qcfz - CLOSE(63) - RETURN ! ----- RETURN - 9234 CONTINUE - print*, "Error writing freezeH2O_mpt.dat" - ENDIF - - endif - end subroutine freezeH2O -!+---+-----------------------------------------------------------------+ -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Cloud ice converting to snow since portion greater than min snow -!.. size. Given cloud ice content (kg/m**3), number concentration -!.. (#/m**3) and gamma shape parameter, mu_i, break the distrib into -!.. bins and figure out the mass/number of ice with sizes larger than -!.. D0s. Also, compute incomplete gamma function for the integration -!.. of ice depositional growth from diameter=0 to D0s. Amount of -!.. ice depositional growth is this portion of distrib while larger -!.. diameters contribute to snow growth (as in Harrington et al. 1995). -!+---+-----------------------------------------------------------------+ - - subroutine qi_aut_qs - - implicit none - -!..Local variables - INTEGER:: i, j, n2 - DOUBLE PRECISION, DIMENSION(nbi):: N_i - DOUBLE PRECISION:: N0_i, lami, Di_mean, t1, t2 - REAL:: xlimit_intg - -!+---+ - - do j = 1, ntb_i1 - do i = 1, ntb_i - lami = (am_i*cig(2)*oig1*Nt_i(j)/r_i(i))**obmi - Di_mean = (bm_i + mu_i + 1.) / lami - N0_i = Nt_i(j)*oig1 * lami**cie(1) - t1 = 0.0d0 - t2 = 0.0d0 - if (SNGL(Di_mean) .gt. 5.*D0s) then - t1 = r_i(i) - t2 = Nt_i(j) - tpi_ide(i,j) = 0.0D0 - elseif (SNGL(Di_mean) .lt. D0i) then - t1 = 0.0D0 - t2 = 0.0D0 - tpi_ide(i,j) = 1.0D0 - else - xlimit_intg = lami*D0s - tpi_ide(i,j) = GAMMP(mu_i+2.0, xlimit_intg) * 1.0D0 - do n2 = 1, nbi - N_i(n2) = N0_i*Di(n2)**mu_i * DEXP(-lami*Di(n2))*dti(n2) - if (Di(n2).ge.D0s) then - t1 = t1 + N_i(n2) * am_i*Di(n2)**bm_i - t2 = t2 + N_i(n2) - endif - enddo - endif - tps_iaus(i,j) = t1 - tni_iaus(i,j) = t2 - enddo - enddo - - end subroutine qi_aut_qs -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Variable collision efficiency for rain collecting cloud water using -!.. method of Beard and Grover, 1974 if a/A less than 0.25; otherwise -!.. uses polynomials to get close match of Pruppacher & Klett Fig 14-9. -!+---+-----------------------------------------------------------------+ - - subroutine table_Efrw - - implicit none - -!..Local variables - DOUBLE PRECISION:: vtr, stokes, reynolds, Ef_rw - DOUBLE PRECISION:: p, yc0, F, G, H, z, K0, X - INTEGER:: i, j - - do j = 1, nbc - do i = 1, nbr - Ef_rw = 0.0 - p = Dc(j)/Dr(i) - if (Dr(i).lt.50.E-6 .or. Dc(j).lt.3.E-6) then - t_Efrw(i,j) = 0.0 - elseif (p.gt.0.25) then - X = Dc(j)*1.D6 - if (Dr(i) .lt. 75.e-6) then - Ef_rw = 0.026794*X - 0.20604 - elseif (Dr(i) .lt. 125.e-6) then - Ef_rw = -0.00066842*X*X + 0.061542*X - 0.37089 - elseif (Dr(i) .lt. 175.e-6) then - Ef_rw = 4.091e-06*X*X*X*X - 0.00030908*X*X*X & - + 0.0066237*X*X - 0.0013687*X - 0.073022 - elseif (Dr(i) .lt. 250.e-6) then - Ef_rw = 9.6719e-5*X*X*X - 0.0068901*X*X + 0.17305*X & - - 0.65988 - elseif (Dr(i) .lt. 350.e-6) then - Ef_rw = 9.0488e-5*X*X*X - 0.006585*X*X + 0.16606*X & - - 0.56125 - else - Ef_rw = 0.00010721*X*X*X - 0.0072962*X*X + 0.1704*X & - - 0.46929 - endif - else - vtr = -0.1021 + 4.932E3*Dr(i) - 0.9551E6*Dr(i)*Dr(i) & - + 0.07934E9*Dr(i)*Dr(i)*Dr(i) & - - 0.002362E12*Dr(i)*Dr(i)*Dr(i)*Dr(i) - stokes = Dc(j)*Dc(j)*vtr*rho_w/(9.*1.718E-5*Dr(i)) - reynolds = 9.*stokes/(p*p*rho_w) - - F = DLOG(reynolds) - G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F - K0 = DEXP(G) - z = DLOG(stokes/(K0+1.D-15)) - H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z - yc0 = 2.0D0/PI2 * ATAN(H) - Ef_rw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p)) - endif - - t_Efrw(i,j) = MAX(0.0, MIN(SNGL(Ef_rw), 0.95)) -! ++ trude - if (Ef_rw_l) then - if (Ef_rw.ne.0.0) then - t_Efrw(i,j) = 1.0 - endif - endif -! -- trude - enddo - enddo - - end subroutine table_Efrw -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Variable collision efficiency for snow collecting cloud water using -!.. method of Wang and Ji, 2000 except equate melted snow diameter to -!.. their "effective collision cross-section." -!+---+-----------------------------------------------------------------+ - - subroutine table_Efsw - - implicit none -!..Local variables - DOUBLE PRECISION:: Ds_m, vts, vtc, stokes, reynolds, Ef_sw - DOUBLE PRECISION:: p, yc0, F, G, H, z, K0 - INTEGER:: i, j - - - do j = 1, nbc - vtc = 1.19D4 * (1.0D4*Dc(j)*Dc(j)*0.25D0) - do i = 1, nbs - vts = av_s*Ds(i)**bv_s * DEXP(-fv_s*Ds(i)) - vtc - Ds_m = (am_s*Ds(i)**bm_s / am_r)**obmr - p = Dc(j)/Ds_m - if (p.gt.0.25 .or. Ds(i).lt.D0s .or. Dc(j).lt.6.E-6 & - .or. vts.lt.1.E-3) then - t_Efsw(i,j) = 0.0 - else - stokes = Dc(j)*Dc(j)*vts*rho_w/(9.*1.718E-5*Ds_m) - reynolds = 9.*stokes/(p*p*rho_w) - - F = DLOG(reynolds) - G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F - K0 = DEXP(G) - z = DLOG(stokes/(K0+1.D-15)) - H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z - yc0 = 2.0D0/PI2 * ATAN(H) - Ef_sw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p)) - - t_Efsw(i,j) = MAX(0.0, MIN(SNGL(Ef_sw), 0.95)) - -! ++ trude - if (Ef_sw_l) then - if (Ef_sw.ne.0.0) then - t_Efsw(i,j) = 1.0 - endif - endif -! -- trude - - endif - - enddo - enddo - - end subroutine table_Efsw -!ctrlL -!+---+-----------------------------------------------------------------+ -!..Integrate rain size distribution from zero to D-star to compute the -!.. number of drops smaller than D-star that evaporate in a single -!.. timestep. Drops larger than D-star dont evaporate entirely so do -!.. not affect number concentration. -!+---+-----------------------------------------------------------------+ - - subroutine table_dropEvap - - implicit none - -!..Local variables - DOUBLE PRECISION:: Nt_r, N0, lam_exp, lam - REAL:: xlimit_intg - INTEGER:: i, j, k - - do k = 1, ntb_r - do j = 1, ntb_r1 - lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(k))**ore1 - lam = lam_exp * (crg(3)*org2*org1)**obmr - N0 = N0r_exp(j)/(crg(2)*lam_exp) * lam**cre(2) - Nt_r = N0 * crg(2) / lam**cre(2) - - do i = 1, nbr - xlimit_intg = lam*Dr(i) - tnr_rev(i,j,k) = GAMMP(mu_r+1.0, xlimit_intg) * Nt_r - enddo - - enddo - enddo - - end subroutine table_dropEvap - -! TO APPLY TABLE ABOVE -!..Rain lookup table indexes. -! Dr_star = DSQRT(-2.D0*DT * t1_evap/(2.*PI) & -! * 0.78*4.*diffu(k)*xsat*rvs/rho_w) -! idx_d = NINT(1.0 + FLOAT(nbr) * DLOG(Dr_star/D0r) & -! / DLOG(Dr(nbr)/D0r)) -! idx_d = MAX(1, MIN(idx_d, nbr)) -! -! nir = NINT(ALOG10(rr(k))) -! do nn = nir-1, nir+1 -! n = nn -! if ( (rr(k)/10.**nn).ge.1.0 .and. & -! (rr(k)/10.**nn).lt.10.0) goto 154 -! enddo -!154 continue -! idx_r = INT(rr(k)/10.**n) + 10*(n-nir2) - (n-nir2) -! idx_r = MAX(1, MIN(idx_r, ntb_r)) -! -! lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr -! lam_exp = lamr * (crg(3)*org2*org1)**bm_r -! N0_exp = org1*rr(k)/am_r * lam_exp**cre(1) -! nir = NINT(DLOG10(N0_exp)) -! do nn = nir-1, nir+1 -! n = nn -! if ( (N0_exp/10.**nn).ge.1.0 .and. & -! (N0_exp/10.**nn).lt.10.0) goto 155 -! enddo -!155 continue -! idx_r1 = INT(N0_exp/10.**n) + 10*(n-nir3) - (n-nir3) -! idx_r1 = MAX(1, MIN(idx_r1, ntb_r1)) -! -! pnr_rev(k) = MIN(nr(k)*odts, SNGL(tnr_rev(idx_d,idx_r1,idx_r) & ! RAIN2M -! * odts)) -! -!ctrlL -!+---+-----------------------------------------------------------------+ -!+---+-----------------------------------------------------------------+ - SUBROUTINE GCF(GAMMCF,A,X,GLN) -! --- RETURNS THE INCOMPLETE GAMMA FUNCTION Q(A,X) EVALUATED BY ITS -! --- CONTINUED FRACTION REPRESENTATION AS GAMMCF. ALSO RETURNS -! --- LN(GAMMA(A)) AS GLN. THE CONTINUED FRACTION IS EVALUATED BY -! --- A MODIFIED LENTZ METHOD. -! --- USES GAMMLN - IMPLICIT NONE - INTEGER, PARAMETER:: ITMAX=100 - REAL, PARAMETER:: gEPS=3.E-7 - REAL, PARAMETER:: FPMIN=1.E-30 - REAL, INTENT(IN):: A, X - REAL:: GAMMCF,GLN - INTEGER:: I - REAL:: AN,B,C,D,DEL,H - GLN=GAMMLN(A) - B=X+1.-A - C=1./FPMIN - D=1./B - H=D - DO 11 I=1,ITMAX - AN=-I*(I-A) - B=B+2. - D=AN*D+B - IF(ABS(D).LT.FPMIN)D=FPMIN - C=B+AN/C - IF(ABS(C).LT.FPMIN)C=FPMIN - D=1./D - DEL=D*C - H=H*DEL - IF(ABS(DEL-1.).LT.gEPS)GOTO 1 - 11 CONTINUE - PRINT *, 'A TOO LARGE, ITMAX TOO SMALL IN GCF' - 1 GAMMCF=EXP(-X+A*LOG(X)-GLN)*H - END SUBROUTINE GCF -! (C) Copr. 1986-92 Numerical Recipes Software 2.02 -!+---+-----------------------------------------------------------------+ - SUBROUTINE GSER(GAMSER,A,X,GLN) -! --- RETURNS THE INCOMPLETE GAMMA FUNCTION P(A,X) EVALUATED BY ITS -! --- ITS SERIES REPRESENTATION AS GAMSER. ALSO RETURNS LN(GAMMA(A)) -! --- AS GLN. -! --- USES GAMMLN - IMPLICIT NONE - INTEGER, PARAMETER:: ITMAX=100 - REAL, PARAMETER:: gEPS=3.E-7 - REAL, INTENT(IN):: A, X - REAL:: GAMSER,GLN - INTEGER:: N - REAL:: AP,DEL,SUM - GLN=GAMMLN(A) - IF(X.LE.0.)THEN - IF(X.LT.0.) PRINT *, 'X < 0 IN GSER' - GAMSER=0. - RETURN - ENDIF - AP=A - SUM=1./A - DEL=SUM - DO 11 N=1,ITMAX - AP=AP+1. - DEL=DEL*X/AP - SUM=SUM+DEL - IF(ABS(DEL).LT.ABS(SUM)*gEPS)GOTO 1 - 11 CONTINUE - PRINT *,'A TOO LARGE, ITMAX TOO SMALL IN GSER' - 1 GAMSER=SUM*EXP(-X+A*LOG(X)-GLN) - END SUBROUTINE GSER -! (C) Copr. 1986-92 Numerical Recipes Software 2.02 -!+---+-----------------------------------------------------------------+ - REAL FUNCTION GAMMLN(XX) -! --- RETURNS THE VALUE LN(GAMMA(XX)) FOR XX > 0. - IMPLICIT NONE - REAL, INTENT(IN):: XX - DOUBLE PRECISION, PARAMETER:: STP = 2.5066282746310005D0 - DOUBLE PRECISION, DIMENSION(6), PARAMETER:: & - COF = (/76.18009172947146D0, -86.50532032941677D0, & - 24.01409824083091D0, -1.231739572450155D0, & - .1208650973866179D-2, -.5395239384953D-5/) - DOUBLE PRECISION:: SER,TMP,X,Y - INTEGER:: J - - X=XX - Y=X - TMP=X+5.5D0 - TMP=(X+0.5D0)*LOG(TMP)-TMP - SER=1.000000000190015D0 - DO 11 J=1,6 - Y=Y+1.D0 - SER=SER+COF(J)/Y -11 CONTINUE - GAMMLN=TMP+LOG(STP*SER/X) - END FUNCTION GAMMLN -! (C) Copr. 1986-92 Numerical Recipes Software 2.02 -!+---+-----------------------------------------------------------------+ - REAL FUNCTION GAMMP(A,X) -! --- COMPUTES THE INCOMPLETE GAMMA FUNCTION P(A,X) -! --- SEE ABRAMOWITZ AND STEGUN 6.5.1 -! --- USES GCF,GSER - IMPLICIT NONE - REAL, INTENT(IN):: A,X - REAL:: GAMMCF,GAMSER,GLN - GAMMP = 0. - IF((X.LT.0.) .OR. (A.LE.0.)) THEN - PRINT *, 'BAD ARGUMENTS IN GAMMP' - RETURN - ELSEIF(X.LT.A+1.)THEN - CALL GSER(GAMSER,A,X,GLN) - GAMMP=GAMSER - ELSE - CALL GCF(GAMMCF,A,X,GLN) - GAMMP=1.-GAMMCF - ENDIF - END FUNCTION GAMMP -! (C) Copr. 1986-92 Numerical Recipes Software 2.02 -!+---+-----------------------------------------------------------------+ - REAL FUNCTION WGAMMA(y) - - IMPLICIT NONE - REAL, INTENT(IN):: y - - WGAMMA = EXP(GAMMLN(y)) - - END FUNCTION WGAMMA !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS ! A FUNCTION OF TEMPERATURE AND PRESSURE