From 36543133e190f63f2572d48ae8837de2390dc29d Mon Sep 17 00:00:00 2001 From: Damian Rouson Date: Mon, 28 Oct 2024 21:17:22 -0700 Subject: [PATCH] chore(train-cloud-micro): indent block internals --- demo/app/train-cloud-microphysics.F90 | 78 +++++++++++++-------------- 1 file changed, 39 insertions(+), 39 deletions(-) diff --git a/demo/app/train-cloud-microphysics.F90 b/demo/app/train-cloud-microphysics.F90 index 3ad745ae6..93ad7b79d 100644 --- a/demo/app/train-cloud-microphysics.F90 +++ b/demo/app/train-cloud-microphysics.F90 @@ -267,45 +267,45 @@ subroutine read_train_write(training_configuration, args, plot_file) inquire(file=network_file, exist=preexisting_network_file) - read_or_initialize_network: & - if (preexisting_network_file) then - print *,"Reading network from file " // network_file - trainable_network = trainable_network_t(neural_network_t(file_t(string_t(network_file)))) - close(network_unit) - else - close(network_unit) - - initialize_network: & - block - character(len=len('YYYYMMDD')) date - - call date_and_time(date) - - print *,"Defining a new network from training_configuration_t and tensor_map_t objects" - - activation: & - associate(activation => training_configuration%activation()) - trainable_network = trainable_network_t( & - training_configuration & - ,perturbation_magnitude = 0.05 & - ,metadata = [ & - string_t("ICAR microphysics" ) & - ,string_t("max-entropy-filter") & - ,string_t(date ) & - ,activation%function_name( ) & - ,string_t(trim(merge("true ", "false", training_configuration%skip_connections()))) & - ] & - ,input_map = tensor_map_t( & - layer = "inputs" & - ,minima = [( input_variable(v)%minimum(), v=1, size( input_variable) )] & - ,maxima = [( input_variable(v)%maximum(), v=1, size( input_variable) )] & - ) & - ,output_map = output_map & - ) - end associate activation - end block initialize_network - - end if read_or_initialize_network + read_or_initialize_network: & + if (preexisting_network_file) then + print *,"Reading network from file " // network_file + trainable_network = trainable_network_t(neural_network_t(file_t(string_t(network_file)))) + close(network_unit) + else + close(network_unit) + + initialize_network: & + block + character(len=len('YYYYMMDD')) date + + call date_and_time(date) + + print *,"Defining a new network from training_configuration_t and tensor_map_t objects" + + activation: & + associate(activation => training_configuration%activation()) + trainable_network = trainable_network_t( & + training_configuration & + ,perturbation_magnitude = 0.05 & + ,metadata = [ & + string_t("ICAR microphysics" ) & + ,string_t("max-entropy-filter") & + ,string_t(date ) & + ,activation%function_name( ) & + ,string_t(trim(merge("true ", "false", training_configuration%skip_connections()))) & + ] & + ,input_map = tensor_map_t( & + layer = "inputs" & + ,minima = [( input_variable(v)%minimum(), v=1, size( input_variable) )] & + ,maxima = [( input_variable(v)%maximum(), v=1, size( input_variable) )] & + ) & + ,output_map = output_map & + ) + end associate activation + end block initialize_network + + end if read_or_initialize_network end block check_for_network_file