forked from cc-ai/climategan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfetch_images_and_masks.py
222 lines (178 loc) · 9.4 KB
/
fetch_images_and_masks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from selenium import webdriver #version 4.x
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service as ChromeService
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.support.ui import Select
from selenium.common.exceptions import NoSuchElementException
from pathlib import Path
import os
import time
from PIL import Image
import numpy as np
import pandas as pd
import sys
def getDetails():
return driver.execute_script("""
const details = window.panoramaViewer.props.orientation
details.lnglat = proj4('EPSG:26918', 'EPSG:4326', Array.from(details.xyz.slice(0,2)))
details.name = details.lnglat.join(',')
return details
""")
def convert_to_black_and_white(input_image_path, output_image_path):
"""
Converts an image to black and white. Any pixel that is HEX #000000 becomes white,
and all other pixels become black.
Args:
input_image_path: The path to the input image file.
output_image_path: The path where the output image will be saved.
Returns:
The path to the saved black and white image.
"""
# Load the image
original_image = Image.open(input_image_path)
# Convert the image to RGB if it's in a different mode (e.g., RGBA or P)
if original_image.mode != 'RGB':
original_image = original_image.convert('RGB')
# Process the image
data = np.array(original_image)
# Set the RGB values to white if they match HEX #000000, else set to black
processed_data = np.where(np.all(data == [0, 0, 0], axis=-1, keepdims=True), [255, 255, 255], [0, 0, 0])
processed_image = Image.fromarray(processed_data.astype('uint8'), 'RGB')
# Save the processed image
processed_image.save(output_image_path)
return output_image_path
def crop_and_save_image(image_path, new_width, new_height, save_to_path=None):
"""
This function takes the path to an image, a new width, a new height, and an optional path to save the cropped image.
If no save_to_path is provided, it will overwrite the original image.
It will crop the image, keeping the center, and save it to the specified path or overwrite the original.
:param image_path: str, the path to the original image
:param new_width: int, the new width of the image
:param new_height: int, the new height of the image
:param save_to_path: str, optional, the path where the cropped image will be saved
"""
try:
# Open the original image
with Image.open(image_path) as img:
# Get the dimensions of the original image
width, height = img.size
# Calculate the coordinates to crop the image around the center
left = (width - new_width) / 2
top = (height - new_height) / 2
right = left + new_width
bottom = top + new_height
# Crop the image
img_cropped = img.crop((left, top, right, bottom))
# If no save_to_path is provided, overwrite the original image
if save_to_path is None:
save_to_path = image_path
# Save the cropped image to the new path
img_cropped.save(save_to_path)
return f"Image successfully saved to {save_to_path}"
except Exception as e:
return f"An error occurred: {e}"
def getImages(details, initial_angle=0, site=00):
for i,yaw in enumerate(range(0, 360, 45)):
actual_yaw = yaw + initial_angle # Pre-calculate the actual_yaw
[os.remove(TEMP_FOLDER / f) for f in os.listdir(TEMP_FOLDER)]
# Use driver.execute_script when you expect a return value immediately
final_yaw = driver.execute_async_script("""
let [actual_yaw, resolve] = arguments;
const event1 = window.panoramaViewer.on('VIEW_LOAD_END', () => res());
const event2 = window.panoramaViewer.on('VIEW_CHANGE', () => res());
function res() {
window.panoramaViewer.off('VIEW_LOAD_END', event1);
window.panoramaViewer.off('VIEW_CHANGE', event2);
resolve(window.panoramaViewer.getOrientation().yaw);
}
window.panoramaViewer.setOrientation({yaw: actual_yaw});
await new Promise(resolve => setTimeout(resolve, 400)); // Ensure settings apply
window.panoramaViewer.saveImage();
""", actual_yaw)
time.sleep(3) # Wait for the image to be downloaded
folder = VIEWS_FOLDER / f"view_{site}"
os.makedirs(folder, exist_ok=True)
# Use final_yaw from the panorama viewer for naming
#os.rename(TEMP_FOLDER / 'panorama.png', folder / f'{details["lnglat"][1]}_{details["lnglat"][0]}_{final_yaw}.png')
os.rename(TEMP_FOLDER / 'panorama.png', folder / f'{site:02}_F0_V{i}.png')
crop_and_save_image(str(folder / f'{site:02}_F0_V{i}.png'), new_width=768, new_height=384)
def getMasks(details, water_from_street=0.5, initial_angle=0, level='Minor', site = 00):
flood_dict = {'Minor':1,'Moderate':2,'Major':3}
for i,yaw in enumerate(range(0, 360, 45)):
actual_yaw = yaw + initial_angle # Pre-calculate the actual_yaw
[os.remove(TEMP_FOLDER / f) for f in os.listdir(TEMP_FOLDER)]
# Adjust the JavaScript to return the final orientation (yaw)
final_yaw = driver.execute_async_script("""
async function processImage(actual_yaw, elevation, resolve) {
window.panoramaViewer.setOrientation({yaw: actual_yaw});
window.panoramaViewer.setContrast(0); // Adjust if needed
window.panoramaViewer.setElevationSliderLevel(elevation);
await new Promise(resolve => setTimeout(resolve, 400)); // Ensure settings apply
if (document.contains(document.getElementsByClassName('panorama-viewer-container')[0].children[2])) {
document.getElementsByClassName('panorama-viewer-container')[0].children[2].remove();
}
window.panoramaViewer.saveImage();
resolve(window.panoramaViewer.getOrientation().yaw); // Return the actual yaw
}
processImage(arguments[0], arguments[1], arguments[2]);
""", actual_yaw, water_from_street)
time.sleep(3) # Wait for the image to be downloaded
convert_to_black_and_white(TEMP_FOLDER / 'panorama.png', TEMP_FOLDER / 'panorama.png')
# move file to a folder with x,y,yaw
folder = VIEWS_FOLDER / f"view_{site}"
os.makedirs(folder / f"{level}", exist_ok=True)
# os.rename( TEMP_FOLDER / 'panorama.png',
# folder / f"{level}" / f'{details["lnglat"][1]}_{details["lnglat"][0]}_{final_yaw}_mask.png' )
os.rename( TEMP_FOLDER / 'panorama.png',
folder / f"{level}" / f'{site:02}_F0_V{i}_mask.png' )
crop_and_save_image(str(folder / f"{level}" / f'{site:02}_F0_V{i}_mask.png'), new_width=768, new_height=384)
def goToLatLng(lat, lng):
driver.execute_async_script(f"""
let [_, resolve] = arguments
const xy = proj4('EPSG:4326', 'EPSG:26918', [{lng},{lat}])
const event = window.panoramaViewer.on('VIEW_LOAD_END', () => {{
window.panoramaViewer.off('VIEW_LOAD_END', event)
resolve()
}})
openimage(xy, 'EPSG:26918')
""", False)
if __name__ == '__main__':
# Get the path to the CSV file from the command line argument
if len(sys.argv) > 1:
csv_path = sys.argv[1]
else:
csv_path = "site_selection.csv"
# Read the CSV file into a DataFrame
sites_df = pd.read_csv(csv_path)
VIEWS_FOLDER = Path('./views')
os.makedirs(VIEWS_FOLDER, exist_ok=True)
chrome_options = webdriver.ChromeOptions()
#save any files in to the temp folder
TEMP_FOLDER = Path('./temp')
os.makedirs(TEMP_FOLDER, exist_ok=True)
prefs = {
'download.default_directory' : str(TEMP_FOLDER.resolve()),
'download.prompt_for_download': False,
'profile.default_content_setting_values.automatic_downloads': 1
}
#chrome_options.add_argument("--headless")
chrome_options.add_argument("--window-size=800,1300")
chrome_options.add_experimental_option('prefs', prefs)
service = ChromeService(executable_path=ChromeDriverManager(latest_release_url='https://chromedriver.storage.googleapis.com/LATEST_RELEASE').install())
#service = ChromeService(ChromeDriverManager().install())
# if you get ValueError: There is no such driver by url, you need to update chrome
driver = webdriver.Chrome(service = service, options=chrome_options)
elevations = ['Minor', 'Moderate', 'Major']
for row in sites_df.iterrows():
row = row[1].copy()
url = f'https://www.geocoder.nyc/streetview?latlng=40.76420/-73.82808'
driver.get(url)
time.sleep(10) # we need to refresh page as we delete the canvas to fetch the mask. For huge number of lat_longs it may make sense to first fetch the main images, and then fetch the mask. In this case we wont have to refresh (applied in the function below).
goToLatLng(row['Lat'],row['Lon'])
details = getDetails()
getImages(details, initial_angle=row['Yaw'], site=row['ID'])
for elevation in elevations:
driver.get(url)
time.sleep(10)
goToLatLng(row['Lat'],row['Lon'])
getMasks(details, initial_angle=row['Yaw'], water_from_street=row[elevation], level=elevation, site=row['ID'])