-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrustmanager.py
345 lines (268 loc) · 9.47 KB
/
trustmanager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -*- coding: utf-8 -*-
"""Copy of [FYP]Core logic.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/19rUSN-R7azur_j0iHjBCi4GShccTnlEJ
"""
# from google.colab import drive
# drive.mount('/content/gdrive')
import numpy as np
import pandas as pd
user_weights = pd.read_csv('userWeights.csv')
user_feedback = pd.read_csv('CSP_QoS_UserFeedback1.csv')
csp_promised_parameters = pd.read_csv('CSP_Promised_Parameters (1).csv')
user_feedback
"""**algo1: TuCi**
1. User required weight inputs are multiplied with si values that CSPs proposed.
"""
print(csp_promised_parameters.shape)
csp_promised_parameters.describe
# ALGO1: TuCi values.
def calculate_tuci(user_inp, csp_params):
return np.stack((csp_params[:,0], np.dot(csp_params[:,1:], user_inp.T)/100), axis =1)
inp1 = np.array([3,3,3,4])
csp_params = csp_promised_parameters.values
# Tuci = np.stack((csp_params[:,0], calculate_tuci(inp1,csp_params[:,1:])), axis=1)
# # len(Tuci)
# Tuci
calculate_tuci(inp1, csp_params)
"""## Collaborative filtering"""
# pip install dateparser
import dateparser as dp
np_user_feedback = user_feedback.values
columns = user_feedback.columns
for i in np_user_feedback:
i[-1] = dp.parse(i[-1])
user_feedback = pd.DataFrame(np_user_feedback, columns = columns)
user_feedback
from sklearn.metrics.pairwise import cosine_similarity
import operator
def similar_users(input_weights, other_users, k=3):
# print(cosine_similarity(input_weights,other_users))
# calc cosine similarity between user and each other user
similarities = cosine_similarity(input_weights,other_users)[0].tolist()
# create list of indices of these users
indices = other_users.index.tolist()
# create key/values pairs of user index and their similarity
index_similarity = dict(zip(indices, similarities))
# sort by similarity
index_similarity_sorted = sorted(index_similarity.items(), key=operator.itemgetter(1))
index_similarity_sorted.reverse()
# grab k users off the top
top_users_similarities = index_similarity_sorted[:k]
users = [u[0] for u in top_users_similarities]
# print(users)
return top_users_similarities
input = np.array([3,3,3,4]).reshape(1,4)
def getlist(input, topk, user_feedback):
csp_set = set()
dummy = user_feedback.drop(["Cloud_Consumer_Name","Cloud_Service_Name", "Timestamp"],axis=1)
# print(similar_users(input, dummy, topk))
for k,v in similar_users(input, dummy, topk):
csp_set.add((user_feedback.loc[k]['Cloud_Service_Name'],v, user_feedback.loc[k]['Timestamp']))
return list(csp_set)
print(getlist(input, 20, user_feedback))
"""op:
20 input
20 unique csp names
desired:
"csp name" - weighted avg score
now:
may not be 20 cspnames but 20 occurences in total.
"csp name" - n occuences.
"""
from datetime import date
import dateparser as dp
from sklearn import preprocessing as pp
from matplotlib import pyplot as plt
def weighted_trust_per_csp(cllb_filter_output, delta):
csp_set = set()
for i in cllb_filter_output:
csp_set.add(i[0])
csp_set = list(csp_set)
# print(csp_set)
weighted_list = []
for csp in csp_set:
filter_csp=[]
times = []
for i in cllb_filter_output:
if(i[0]==csp):
filter_csp.append(i)
if(len(filter_csp) != 1):
for i in filter_csp:
times.append(i[2])
# print(csp)
# print(min(times), max(times))
diminishing_factor=[]
# print(filter_csp)
# print(times)
today = date.today()
today = today.strftime("%B %d, %Y")
max_time = dp.parse(today)
for i in range(len(times)):
diminishing_factor.append(delta**((((max_time- times[i]).days)/365)/len(times)))
# filter_csp.sort(key = lambda x : dp.parse(x[2]))
temp = []
for j in range(len(filter_csp)):
temp.append(filter_csp[j][1])
# # print(times)
weighted_sum = 0
# t2 = []
# print(len(times), len(filter_csp))
for i in range(len(filter_csp)):
weighted_sum += filter_csp[i][1]*diminishing_factor[i]
# t2.append(filter_csp[i][1]*diminishing_factor[i])
weighted_list.append([csp,weighted_sum/len(filter_csp)])
# x = range(len(filter_csp))
# y = temp
# x2 = range(len(filter_csp))
# y2 = t2
# plt.ylim(ymax = 1.5, ymin = 0)
# plt.plot(x,y)
# plt.plot(x2,y2)
# plt.legend(["Dataset 1", "Dataset 2"])
# plt.show()
else:
weighted_list.append([csp,filter_csp[0][1]])
weighted_list = np.array(weighted_list)
return weighted_list
weighted_trust_per_csp(getlist(input,20, user_feedback) , 0.35)
def average_trust_per_csp(cllb_filter_output):
csp_set = set()
for i in cllb_filter_output:
csp_set.add(i[0])
csp_set = list(csp_set)
# print(csp_set)
weighted_list = []
for csp in csp_set:
filter_csp=[]
scores = []
for i in cllb_filter_output:
if(i[0]==csp):
filter_csp.append(i)
if(len(filter_csp) != 1):
# print(filter_csp)
for i in filter_csp:
scores.append(i[1])
# print(csp)
# print(min(scores), max(scores))
weighted_list.append([csp, sum(scores)/len(scores)])
# else:
# weighted_list.append([csp,filter_csp[0][1]])
weighted_list = np.array(weighted_list)
return weighted_list
weighted_trust_per_csp(getlist(input,20, user_feedback) , 0.5)
average_trust_per_csp( getlist(input,20, user_feedback))
def merge_tuci_tfci(tfci, tuci, weights, topk):
final_trust = []
for i in range(len(tuci)):
row =[]
if(len(tfci)!= 0):
row = tfci[np.where(tfci[:,0] == tuci[i][0])]
f = 0
if(len(row)!=0):
f = float(row[0][1])
u = tuci[i][1]
final_trust.append([tuci[i][0],u,f, weights[0]*u + weights[1]*f])
final_trust.sort(key = lambda x : x[3], reverse = True)
return final_trust[:topk]
# print(tfci[np.where(tfci[:,0] == "Carbonite")])
inp1 = np.array([3,3,3,4])
ret = merge_tuci_tfci(weighted_trust_per_csp( getlist(inp1.reshape(1,4),20, user_feedback), 3.5), calculate_tuci(inp1, csp_params), [0.01, 0.99],10)
ret[:10]
inp1 = np.array([3,3,3,4])
ret = merge_tuci_tfci(average_trust_per_csp( getlist(inp1.reshape(1,4),20, user_feedback)), calculate_tuci(inp1, csp_params), [0.01, 0.99],10)
ret[:10]
l = []
for i in range(100):
l.append(i/100)
mat = []
for i in range(len(l)):
mat.append(merge_tuci_tfci(average_trust_per_csp( getlist(input,20,user_feedback)), calculate_tuci(inp1, csp_params), [l[i],1-l[i]],10)[0][-1]*100)
import numpy as np; np.random.seed(0)
import seaborn as sns; sns.set_theme()
import matplotlib.pyplot as plt
print(mat)
mat = np.asarray(mat).reshape(100,1)
fig, ax = plt.subplots(figsize=(10,10)) # Sample figsize in inches
sns.heatmap(mat, linewidths=.5, ax=ax)
# ax = sns.heatmap(mat)
# d = user_feedback.drop(1)
user_feedback.values[1]
# inp1 = np.array([4,4,4,4])
# ret = merge_tuci_tfci(average_trust_per_csp( getlist(inp1.reshape(1,4),20)), calculate_tuci(inp1, csp_params), [0.01, 0.99])
# ret[:10]
feedback_db = user_feedback
weights = [0,0]
max_n = 0
w1 = [i/10 for i in range(1, 10)]
for x in range(len(w1)-1,-1,-1):
avg_result= 0
avg_max_result = 0
match= 0
for y in range(feedback_db.shape[0]):
inp = feedback_db.values[y][1:5]
dummy = feedback_db.drop(y)
ret = merge_tuci_tfci(average_trust_per_csp(getlist(inp.reshape(1,4), 100, dummy)), calculate_tuci(inp, csp_params), [w1[x], 1-w1[x]],10)
# print("ret")
# print(ret)
# print("avg list")
# print(average_trust_per_csp(getlist(inp.reshape(1,4), 30, dummy)))
# print("tuci")
# print(calculate_tuci(inp, csp_params))
ret = np.array(ret)
# print("---"+feedback_db.values[y][5],ret)
id = np.where(ret[:,0]==feedback_db.values[y][5])
# print("id:")
# print(id, ret[id])
avg_max_result += float(ret[0][3])
if(len(id[0]) == 0):
avg_result+=0
else:
# print(w1[x] ,ret[id][0][3])
if(feedback_db.values[y][5] in ret[:,0]):
match+=1
avg_result += float(ret[id][0][3])
avg_result /= feedback_db.shape[0]
avg_max_result /= feedback_db.shape[0]
if(match > max_n):
weights =[w1[x], 1-w1[x]]
max_n = match
print(w1[x],weights, avg_result, avg_max_result, match)
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.array(user_feedback["Uptime"])
y = np.array(user_feedback["Downtime"])
z = np.array(user_feedback["Fault_Tolerance_Capability"])
c = np.array(user_feedback["Application_Update_Frequency"])
img = ax.scatter(x, y, z, c=c, cmap=plt.hot())
fig.colorbar(img)
plt.show()
for i in csp_params[:,0]:
data1 = user_feedback[user_feedback['Cloud_Service_Name']==i]
uptime = data1['Uptime']
downtime = data1['Downtime']
ft = data1['Fault_Tolerance_Capability']
auf = data1['Application_Update_Frequency']
col = [uptime,downtime, ft,auf]
fig, ax = plt.subplots()
plt.title(i)
ax.boxplot(col)
plt.show()
print(data1['Uptime'])
ind = []
for i in csp_params[:,0]:
data1 = user_feedback[user_feedback['Cloud_Service_Name']==i]
Q1 = data1.quantile(0.25)
Q3 = data1.quantile(0.75)
IQR = Q3 - Q1
count = (data1 < (Q1 - 1.5 * IQR)) |(data1 > (Q3 + 1.5 * IQR))
count = count*1
count["sum"] = count.sum(axis=1)
for j,row in count.iterrows():
if row['sum']>2:
ind.append(j)
print(user_feedback.iloc[ind])