-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtesting.py
109 lines (91 loc) · 4.01 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import dlib as DLIB
import cv2 as CV2
import numpy as NP
# 用來顯示的函示庫
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
# 將特徵點的座標轉成陣列
def shape_to_np(shape, dtype = "int"):
# initialize the list of (x, y)-coordinates
coords = NP.zeros((68, 2), dtype = dtype)
# loop over the 68 facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
def face_detect():
# 建立人臉偵測
detector = DLIB.get_frontal_face_detector()
# 建立人臉細節偵測
predictor = DLIB.shape_predictor('model/shape_predictor_68_face_landmarks.dat')
img = CV2.imread('image.jpg')
# 開啟視窗叫 "image"
CV2.imshow('image', img)
# 取得人臉位置
rects = detector( img )
while True:
# 假如有多個人臉就迴圈判斷
for rect in rects:
# 找出人臉的眼睛、嘴吧、鼻子位置,並且加以標記
shape = predictor(img, rect)
for i in range(0, 68):
CV2.circle(img, (shape.part(i).x, shape.part(i).y), 1, (0, 0, 255), -1)
shape = shape_to_np(shape)
# 建立特徵點陣列 (點由 Dlib 產生)
image_points = NP.array([
shape[30], # 取得鼻尖點
shape[8], # 取得下巴點
shape[36], # 取得左眼左眼角
shape[45], # 取得右眼右眼角
shape[48], # 取得左嘴角
shape[54] # 取得右嘴角
],
dtype='double')
for element in image_points:
CV2.circle(img, (int(element[0]), int(element[1])), 3, (0,255,0), -1)
# 顯示偵測出的圖片 與 閥值設定遮照圖
CV2.imshow('face', img)
# 離開迴圈,關閉攝影機q
if CV2.waitKey(1) & 0xFF == ord('q'):
break
CV2.destroyAllWindows()
face_detect()
def face_model():
# 建立臉部 3D 模型位置.
FACE_3D_MODEL_POINT = NP.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(-225.0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corne
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner
], dtype='double')
FACE_3D_NANE = ['Nose tip', 'Chin', 'Left eye left corner', 'Right eye right corne', 'Left Mouth corner', 'Right mouth corner']
count = 0
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for element in FACE_3D_MODEL_POINT:
ax.scatter(element[0], element[1], element[2], marker='o')
ax.text(element[0], element[1], element[2], FACE_3D_NANE[count])
count += 1
# 鼻尖道下八
ax.plot([0.0, 0.0], [0.0, -330], [0.0, -65.0])
# 左眼到右眼
ax.plot([-225.0, 225.0], [170, 170], [-135.0, -135.0])
# 左眼到左嘴
ax.plot([-225.0, -150.0,], [170, -150.0,], [-135.0, -125.0])
# 右眼到右嘴
ax.plot([225.0, 150.0,], [170, -150.0,], [-135.0, -125.0])
# 左嘴到右嘴
ax.plot([-150.0, 150.0,], [-150, -150.0,], [-125.0, -125.0])
# 左嘴道下巴
ax.plot([-150.0, 0.0,], [-150, -330.0,], [-125.0, -65.0])
# 右嘴道下巴
ax.plot([150.0, 0.0,], [-150, -330.0,], [-125.0, -65.0])
# 左眼到鼻尖
ax.plot([-225.0, 0.0], [170.0, 0.0], [-135.0, 0.0])
# 右眼到鼻尖
ax.plot([225.0, 0.0], [170.0, 0.0], [-135.0, 0.0])
plt.show()