forked from gpertea/gclib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAlnExtend.cpp
1076 lines (964 loc) · 35.9 KB
/
GAlnExtend.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "GAlnExtend.h"
//greedy gapped alignment extension
//(mostly lifted from NCBI's megablast gapped extension code)
int GXMemPool::kMinSpace = 1000000;
// ifdef TRIMDEBUG
char COLOR_buf[6]={0x1B,'[', 'n','m','m','\0'};
void color_fg(int c,FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"%dm",c+30);
fwrite(COLOR_buf,1,strlen(COLOR_buf), f);
}
void color_bg(int c, FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"%dm",c+40);
fwrite(COLOR_buf,1,strlen(COLOR_buf),f);
};
void color_resetfg(FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"39m");
fwrite(COLOR_buf,1,strlen(COLOR_buf), f);
};
void color_resetbg(FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"49m");
fwrite(COLOR_buf,1,strlen(COLOR_buf), f);
}
void color_reset(FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"0m");
fwrite(COLOR_buf,1,strlen(COLOR_buf), f);
};
void color_normal(FILE* f) {
if (f!=stderr && f!=stdout) return;
sprintf((char *)(&COLOR_buf[2]),"22m");
fwrite(COLOR_buf,1,strlen(COLOR_buf), f);
};
// endif
char xgapcodes[4]={'S','I', 'D', 'X'};
int get_last(int **flast_d, int d, int diag, int *row1) {
if (flast_d[d-1][diag-1] > GMAX(flast_d[d-1][diag], flast_d[d-1][diag+1])) {
*row1 = flast_d[d-1][diag-1];
return diag-1;
}
if (flast_d[d-1][diag] > flast_d[d-1][diag+1]) {
*row1 = flast_d[d-1][diag];
return diag;
}
*row1 = flast_d[d-1][diag+1];
return diag+1;
}
void GapXEditScript::print() { //debug
GapXEditScript* p=this;
do {
GMessage("%d%c ",p->num, xgapcodes[p->op_type]);
} while ((p=p->next)!=NULL);
GMessage("\n");
}
int BLAST_Gcd(int a, int b) {
int c;
b = abs(b);
if (b > a)
c=a, a=b, b=c;
while (b != 0) {
c = a%b;
a = b;
b = c;
}
return a;
}
int BLAST_Gdb3(int* a, int* b, int* c) {
int g;
if (*b == 0)
g = BLAST_Gcd(*a, *c);
else
g = BLAST_Gcd(*a, BLAST_Gcd(*b, *c));
if (g > 1) {
*a /= g;
*b /= g;
*c /= g;
}
return g;
}
uint16 get6mer(char* p) {
uint16 r=gdna2bit(p,3);
r <<= 6;
r |= gdna2bit(p,3);
return r;
}
void table6mers(const char* s, int slen, GVec<uint16>* amers[]) {
for (uint16 i=0; i <= slen-6; i++) {
char* p = (char*)(s+i);
uint16 v=get6mer(p);
if (amers[v]==NULL) {
amers[v]=new GVec<uint16>(1);
}
amers[v]->Add(i);
}
}
GVec<uint16>* match6mer(char* start, GVec<uint16>* amers[]) {
//careful: this is broken if start+5 falls beyond the end of the string!
uint16 r=get6mer(start);
return amers[r];
}
//signal that a diagonal is invalid
static const int kInvalidOffset = -2;
int s_FindFirstMismatch(const char *seq1, int len1,
const char *seq2, int len2,
int seq1_index, int seq2_index,
//bool &fence_hit,
bool reverse) {
int start_index = seq1_index;
/* Sentry detection here should be relatively inexpensive: The
sentry value cannot appear in the query, so detection only
needs to be done at exit from the subject-query matching loop.
For uncompressed sequences, ambiguities in the query (i.e. seq1)
always count as mismatches */
if (reverse) {
while (seq1_index < len1 && seq2_index < len2 &&
//seq1[len1-1 - seq1_index] < 4 &&
seq1[len1-1 - seq1_index] == seq2[len2-1 - seq2_index]) {
++seq1_index;
++seq2_index;
}
//if (seq2_index < len2 && seq2[len2-1-seq2_index] == FENCE_SENTRY) {
//if len2-1-seq2_index<=0) {
// fence_hit = true;
// }
}
else { //forward lookup
while (seq1_index < len1 && seq2_index < len2 &&
//seq1[seq1_index] < 4 &&
seq1[seq1_index] == seq2[seq2_index]) {
++seq1_index;
++seq2_index;
}
//if (seq2_index < len2 && seq2[seq2_index] == FENCE_SENTRY) {
//if (seq2_index==len2) {
// fence_hit = true;
//}
}
return seq1_index - start_index;
}
/** During the traceback for a non-affine greedy alignment,
compute the diagonal that will result from the next
traceback operation
@param last_seq2_off Array of offsets into the second sequence;
last_seq2_off[d][k] gives the largest offset into
the second sequence that lies on diagonal k and
has distance d [in]
@param d Starting distance [in]
@param diag Index of diagonal that produced the starting distance [in]
@param seq2_index The offset into the second sequence after the traceback
operation has completed [out]
@return The diagonal resulting from the next traceback operation
being applied
*/
int s_GetNextNonAffineTback(int **last_seq2_off, int d,
int diag, int *seq2_index) {
// choose the traceback operation that results in the
// largest seq2 offset at this point, then compute the
// new diagonal that is implied by the operation
if (last_seq2_off[d-1][diag-1] >
GMAX(last_seq2_off[d-1][diag], last_seq2_off[d-1][diag+1])) {
*seq2_index = last_seq2_off[d-1][diag-1];
return diag - 1; // gap in seq2
}
if (last_seq2_off[d-1][diag] > last_seq2_off[d-1][diag+1]) {
*seq2_index = last_seq2_off[d-1][diag];
return diag; // match
}
*seq2_index = last_seq2_off[d-1][diag+1];
return diag + 1; // gap in seq1
}
int GXGreedyExtend(const char* seq1, int len1,
const char* seq2, int len2,
bool reverse, //int xdrop_threshold, int match_cost, int mismatch_cost,
int& seq1_align_len, int& seq2_align_len,
CGreedyAlignData& aux_data,
GXEditScript *edit_block) {
//GapPrelimEditBlock *edit_block,
//bool& fence_hit, SGreedySeed *seed) {
int seq1_index;
int seq2_index;
int index;
int d;
int k;
int diag_lower, diag_upper;
int max_dist;
int diag_origin;
int best_dist;
int best_diag;
int** last_seq2_off;
int* max_score;
int xdrop_offset;
int longest_match_run;
bool end1_reached, end2_reached;
GXMemPool* mem_pool;
/* ordinary dynamic programming alignment, for each offset
in seq1, walks through offsets in seq2 until an X-dropoff
test fails, saving the best score encountered along
the way. Instead of score, this code tracks the 'distance'
(number of mismatches plus number of gaps) between seq1
and seq2. Instead of walking through sequence offsets, it
walks through diagonals that can achieve a given distance.
Note that in what follows, the numbering of diagonals implies
a dot matrix where increasing seq1 offsets go to the right on
the x axis, and increasing seq2 offsets go up the y axis.
The gapped alignment thus proceeds up and to the right in
the graph, and diagonals are numbered increasing to the right */
best_dist = 0;
best_diag = 0;
/* set the number of distinct distances the algorithm will
examine in the search for an optimal alignment. The
heuristic worst-case running time of the algorithm is
O(max_dist**2 + (len1+len2)); for sequences which are
very similar, the average running time will be sig-
nificantly better than this */
max_dist = GMIN(GREEDY_MAX_COST,
(len2/GREEDY_MAX_COST_FRACTION + 1));
/* the main loop assumes that the index of all diagonals is
biased to lie in the middle of allocated bookkeeping
structures */
diag_origin = max_dist + 2;
// last_seq2_off[d][k] is the largest offset into seq2 that
// lies on diagonal k and has distance d
last_seq2_off = aux_data.last_seq2_off;
/* Instead of tracking the best alignment score and using
xdrop_theshold directly, track the best score for each
unique distance and use the best score for some previously
computed distance to implement the X-dropoff test.
xdrop_offset gives the distance backwards in the score
array to look */
xdrop_offset = aux_data.xdrop_ofs;
// find the offset of the first mismatch between seq1 and seq2
index = s_FindFirstMismatch(seq1, len1, seq2, len2, 0, 0, reverse);
// fence_hit, reverse, rem);
// update the extents of the alignment, and bail out
// early if no further work is needed
seq1_align_len = index;
seq2_align_len = index;
seq1_index = index;
/*
seed->start_q = 0;
seed->start_s = 0;
seed->match_length = index;
*/
longest_match_run = index;
if (index == len1 || index == len2) {
/* Return the number of differences, which is zero here */
if (edit_block != NULL)
//GapPrelimEditBlockAdd(edit_block, eGapAlignSub, index);
edit_block->opRep(index);
return 0;
}
// set up the memory pool
mem_pool = aux_data.space;
if (edit_block == NULL) {
mem_pool = NULL;
}
else if (mem_pool == NULL) {
aux_data.space = mem_pool = new GXMemPool();
}
else {
mem_pool->refresh();
}
/* set up the array of per-distance maximum scores. There
are max_diags + xdrop_offset distances to track, the first
xdrop_offset of which are 0 */
max_score = aux_data.max_score + xdrop_offset;
for (index = 0; index < xdrop_offset; index++)
aux_data.max_score[index] = 0;
// fill in the initial offsets of the distance matrix
last_seq2_off[0][diag_origin] = seq1_index;
max_score[0] = seq1_index * aux_data.match_reward;
diag_lower = diag_origin - 1;
diag_upper = diag_origin + 1;
end1_reached = end2_reached = false;
// for each distance
for (d = 1; d <= max_dist; d++) {
int xdrop_score;
int curr_score;
int curr_extent = 0;
int curr_seq2_index = 0;
int curr_diag = 0;
int tmp_diag_lower = diag_lower;
int tmp_diag_upper = diag_upper;
// Assign impossible seq2 offsets to any diagonals that
// are not in the range (diag_lower,diag_upper).
// These will serve as sentinel values for the inner loop
last_seq2_off[d - 1][diag_lower-1] = kInvalidOffset;
last_seq2_off[d - 1][diag_lower] = kInvalidOffset;
last_seq2_off[d - 1][diag_upper] = kInvalidOffset;
last_seq2_off[d - 1][diag_upper+1] = kInvalidOffset;
// compute the score for distance d corresponding to the X-dropoff criterion
xdrop_score = max_score[d - xdrop_offset] +
(aux_data.match_reward + aux_data.mismatch_penalty) * d - aux_data.x_drop;
xdrop_score = (int)ceil((double)xdrop_score / (aux_data.match_reward>>1));
// for each diagonal of interest
for (k = tmp_diag_lower; k <= tmp_diag_upper; k++) {
/* find the largest offset into seq2 that increases
the distance from d-1 to d (i.e. keeps the alignment
from getting worse for as long as possible), then
choose the offset into seq1 that will keep the
resulting diagonal fixed at k
Note that this requires kInvalidOffset+1 to be smaller
than any valid offset into seq2, i.e. to be negative */
seq2_index = GMAX(last_seq2_off[d - 1][k + 1],
last_seq2_off[d - 1][k ]) + 1;
seq2_index = GMAX(seq2_index, last_seq2_off[d - 1][k - 1]);
seq1_index = seq2_index + k - diag_origin;
if (seq2_index < 0 || seq1_index + seq2_index < xdrop_score) {
// if no valid diagonal can reach distance d, or the
// X-dropoff test fails, narrow the range of diagonals
// to test and skip to the next diagonal
if (k == diag_lower)
diag_lower++;
else
last_seq2_off[d][k] = kInvalidOffset;
continue;
}
diag_upper = k;
/* slide down diagonal k until a mismatch
occurs. As long as only matches are encountered,
the current distance d will not change */
index = s_FindFirstMismatch(seq1, len1, seq2, len2,
seq1_index, seq2_index, reverse);
//fence_hit, reverse, rem);
if (index > longest_match_run) {
//seed->start_q = seq1_index;
//seed->start_s = seq2_index;
//seed->match_length = index;
longest_match_run = index;
}
seq1_index += index;
seq2_index += index;
// set the new largest seq2 offset that achieves
// distance d on diagonal k
last_seq2_off[d][k] = seq2_index;
// since all values of k are constrained to have the
// same distance d, the value of k which maximizes the
// alignment score is the one that covers the most of seq1 and seq2
if (seq1_index + seq2_index > curr_extent) {
curr_extent = seq1_index + seq2_index;
curr_seq2_index = seq2_index;
curr_diag = k;
}
/* clamp the bounds on diagonals to avoid walking off
either sequence. Because the bounds increase by at
most one for each distance, diag_lower and diag_upper
can each be of size at most max_diags+2 */
if (seq2_index == len2) {
diag_lower = k + 1;
end2_reached = true;
}
if (seq1_index == len1) {
diag_upper = k - 1;
end1_reached = true;
}
} // end loop over diagonals
// compute the maximum score possible for distance d
curr_score = curr_extent * (aux_data.match_reward / 2) -
d * (aux_data.match_reward + aux_data.mismatch_penalty);
// if this is the best score seen so far, update the
// statistics of the best alignment
if (curr_score > max_score[d - 1]) {
max_score[d] = curr_score;
best_dist = d;
best_diag = curr_diag;
seq2_align_len = curr_seq2_index;
seq1_align_len = curr_seq2_index + best_diag - diag_origin;
}
else {
max_score[d] = max_score[d - 1];
}
// alignment has finished if the lower and upper bounds
// on diagonals to check have converged to each other
if (diag_lower > diag_upper)
break;
/* set up for the next distance to examine. Because the
bounds increase by at most one for each distance,
diag_lower and diag_upper can each be of size at
most max_diags+2 */
if (!end2_reached)
diag_lower--;
if (!end1_reached)
diag_upper++;
if (edit_block == NULL) {
// if no traceback is specified, the next row of
// last_seq2_off can reuse previously allocated memory
//WARNING The following assumes two arrays of
// at least max_dist+4 int's have already been allocated
last_seq2_off[d + 1] = last_seq2_off[d - 1];
}
else {
// traceback requires all rows of last_seq2_off to be saved,
// so a new row must be allocated
last_seq2_off[d + 1] = (int*)mem_pool->getByteSpace((diag_upper - diag_lower + 7)*sizeof(int));
// move the origin for this row backwards
// dubious pointer arithmetic ?!
//last_seq2_off[d + 1] = last_seq2_off[d + 1] - diag_lower + 2;
}
} // end loop over distinct distances
if (edit_block == NULL)
return best_dist;
//---- perform traceback
d = best_dist;
seq1_index = seq1_align_len;
seq2_index = seq2_align_len;
// for all positive distances
//if (fence_hit && *fence_hit)
// goto done;
if (index==len1 || index==len2) d=0;
while (d > 0) {
int new_diag;
int new_seq2_index;
/* retrieve the value of the diagonal after the next
traceback operation. best_diag starts off with the
value computed during the alignment process */
new_diag = s_GetNextNonAffineTback(last_seq2_off, d,
best_diag, &new_seq2_index);
if (new_diag == best_diag) {
// same diagonal: issue a group of substitutions
if (seq2_index - new_seq2_index > 0) {
edit_block->opRep(seq2_index - new_seq2_index);
}
}
else if (new_diag < best_diag) {
// smaller diagonal: issue a group of substitutions
// and then a gap in seq2 */
if (seq2_index - new_seq2_index > 0) {
edit_block->opRep(seq2_index - new_seq2_index);
}
//GapPrelimEditBlockAdd(edit_block, eGapAlignIns, 1);
edit_block->opIns(1);
}
else {
// larger diagonal: issue a group of substitutions
// and then a gap in seq1
if (seq2_index - new_seq2_index - 1 > 0) {
edit_block->opRep(seq2_index - new_seq2_index - 1);
}
edit_block->opDel(1);
}
d--;
best_diag = new_diag;
seq2_index = new_seq2_index;
}
//done:
// handle the final group of substitutions back to distance zero,
// i.e. back to offset zero of seq1 and seq2
//GapPrelimEditBlockAdd(edit_block, eGapAlignSub,
// last_seq2_off[0][diag_origin]);
edit_block->opRep(last_seq2_off[0][diag_origin]);
if (!reverse)
edit_block->reverse();
return best_dist;
}
void printEditScript(GXEditScript* ed_script) {
uint i;
if (ed_script==NULL || ed_script->opnum == 0)
return;
for (i=0; i<ed_script->opnum; i++) {
int num=((ed_script->ops[i]) >> 2);
unsigned char op_type = 3 - ( ed_script->ops[i] & gxEDIT_OP_MASK );
if (op_type == 3)
GError("Error: printEditScript encountered op_type 3 ?!\n");
GMessage("%d%c ", num, xgapcodes[op_type]);
}
GMessage("\n");
}
GXAlnInfo* GreedyAlign(const char* q_seq, int q_alnstart, const char* s_seq, int s_alnstart,
bool editscript, int reward, int penalty, int xdrop) {
int q_max=strlen(q_seq); //query
int s_max=strlen(s_seq); //subj
return GreedyAlignRegion(q_seq, q_alnstart, q_max,
s_seq, s_alnstart, s_max, reward, penalty, xdrop, NULL, NULL, editscript);
}
struct GXSeedTable {
int a_num, b_num;
int a_cap, b_cap;
char* xc;
GXSeedTable(int a=12, int b=255) {
a_cap=0;
b_cap=0;
a_num=0;
b_num=0;
xc=NULL;
init(a,b);
}
~GXSeedTable() {
GFREE(xc);
}
void init(int a, int b) {
a_num=a;
b_num=b;
bool resize=false;
if (b_num>b_cap) { resize=true; b_cap=b_num;}
if (a_num>a_cap) { resize=true; a_cap=a_num;}
if (resize) {
GFREE(xc);
GCALLOC(xc, (a_num*b_num));
}
else {
//just clear up to a_max, b_max
memset((void*)xc, 0, (a_num*b_num));
}
}
char& x(int ax, int by) {
return xc[by*a_num+ax];
}
};
const int a_m_score=2; //match score
const int a_mis_score=-3; //mismatch
const int a_dropoff_score=7;
const int a_min_score=12; //at least 6 bases full match
// ------------------ adapter matching - simple k-mer seed & extend, no indels for now
//when a k-mer match is found, simply try to extend the alignment using a drop-off scheme
//check minimum score and
//for 3' adapter trimming:
// require that the right end of the alignment for either the adapter OR the read must be
// < 3 distance from its right end
// for 5' adapter trimming:
// require that the left end of the alignment for either the adapter OR the read must
// be at coordinate < 3 from start
bool extendUngapped(const char* a, int alen, int ai,
const char* b, int blen, int bi, int& mlen, int& l5, int& l3, bool end5=false) {
//so the alignment starts at ai in a, bi in b, with a perfect match of length mlen
//if (debug) {
// GMessage(">> in %s\n\textending hit: %s at position %d\n", a, (dbg.substr(bi, mlen)).chars(), ai);
// }
int a_l=ai; //alignment coordinates on a
int a_r=ai+mlen-1;
int b_l=bi; //alignment coordinates on b
int b_r=bi+mlen-1;
int ai_maxscore=ai;
int bi_maxscore=bi;
int score=mlen*a_m_score;
int maxscore=score;
int mism5score=a_mis_score;
if (end5 && ai<(alen>>1)) mism5score-=2; // increase penalty for mismatches at 5' end
//try to extend to the left first, if possible
while (ai>0 && bi>0) {
ai--;
bi--;
score+= (a[ai]==b[bi])? a_m_score : mism5score;
if (score>maxscore) {
ai_maxscore=ai;
bi_maxscore=bi;
maxscore=score;
}
else if (maxscore-score>a_dropoff_score) break;
}
a_l=ai_maxscore;
b_l=bi_maxscore;
//now extend to the right
ai_maxscore=a_r;
bi_maxscore=b_r;
ai=a_r;
bi=b_r;
score=maxscore;
//sometimes there are extra As at the end of the read, ignore those
if (a[alen-2]=='A' && a[alen-1]=='A') {
alen-=2;
while (a[alen-1]=='A' && alen>ai) alen--;
}
while (ai<alen-1 && bi<blen-1) {
ai++;
bi++;
//score+= (a[ai]==b[bi])? a_m_score : a_mis_score;
if (a[ai]==b[bi]) { //match
score+=a_m_score;
if (ai>=alen-2) {
score+=a_m_score-(alen-ai-1);
}
}
else { //mismatch
score+=a_mis_score;
}
if (score>maxscore) {
ai_maxscore=ai;
bi_maxscore=bi;
maxscore=score;
}
else if (maxscore-score>a_dropoff_score) break;
}
a_r=ai_maxscore;
b_r=bi_maxscore;
int a_ovh3=alen-a_r-1;
int b_ovh3=blen-b_r-1;
int mmovh3=(a_ovh3<b_ovh3)? a_ovh3 : b_ovh3;
int mmovh5=(a_l<b_l)? a_l : b_l;
if (maxscore>=a_min_score && mmovh3<2 && mmovh5<2) {
if (a_l<a_ovh3) {
//adapter closer to the left end (typical for 5' adapter)
l5=a_r+1;
l3=alen-1;
}
else {
//adapter matching at the right end (typical for 3' adapter)
l5=0;
l3=a_l-1;
}
return true;
}
//do not trim:
l5=0;
l3=alen-1;
return false;
}
GXBandSet* collectSeeds(GList<GXSeed>& seeds, GXSeqData& sd, GAlnTrimType trim_intent) {
int bimin=GMAX(0,(sd.blen-sd.alen-6)); //from collectSeeds_R
int bimax=GMIN((sd.alen+2), (sd.blen-6));
int b_start = (trim_intent==galn_TrimRight) ? bimin : 0;
int b_end = (trim_intent==galn_TrimLeft) ? bimax : sd.blen-6;
//gx.init(a_maxlen, b_maxlen);
GXSeedTable gx(sd.alen, sd.blen);
GXBandSet* diagstrips=new GXBandSet(sd.alen, sd.blen); //set of overlapping 3-diagonal strips
for (int bi=b_start;bi<=b_end;bi++) {
//for each 6-mer of seqb
uint16 bv = get6mer((char*) & (sd.bseq[bi]));
GVec<uint16>* alocs = sd.amers[bv];
if (alocs==NULL) continue;
//extend each hit
for (int h=0;h<alocs->Count();h++) {
int ai=alocs->Get(h);
//word match
if (gx.x(ai,bi))
//already have a previous seed covering this region of this diagonal
continue;
if (trim_intent==galn_TrimLeft && sd.blen>sd.alen+6 && bi>ai+6)
continue; //improper positioning for 5' trimming
if (trim_intent==galn_TrimRight && sd.blen>sd.alen+6 && bi<ai-6)
continue; //improper positioning for 5' trimming
//TODO: there could be Ns in this seed, should we count/adjust score?
for (int i=0;i<6;i++)
gx.x(ai+i,bi+i)=1;
//see if we can extend to the right
int aix=ai+6;
int bix=bi+6;
int len=6;
while (bix<sd.blen && aix<sd.alen && sd.aseq[aix]==sd.bseq[bix]) {
gx.x(aix,bix)=1;
aix++;bix++;
len++;
}
if (len>sd.amlen) {
//heuristics: very likely the best we can get
//quick match shortcut
diagstrips->qmatch=new GXSeed(ai,bi,len);
return diagstrips;
}
if (bi>bimax && bi<bimin && len<9)
//ignore mid-sequence seeds that are not high scoring
continue;
GXSeed* newseed=new GXSeed(ai,bi,len);
seeds.Add(newseed);
diagstrips->addSeed(newseed);//add it to all 3 adjacent diagonals
//keep last resort terminal match to be used if no better alignment is there
if (bi<2 && ai+len>=sd.alen-1 &&
(!diagstrips->tmatch_l || diagstrips->tmatch_l->len<len))
diagstrips->tmatch_l=newseed;
//collectSeeds_R:
if (ai<2 && bi+len>sd.blen-2 &&
(!diagstrips->tmatch_r || diagstrips->tmatch_r->len<len))
diagstrips->tmatch_r=newseed;
}
} //for each 6-mer of the read
for (int i=0;i<diagstrips->Count();i++) {
diagstrips->Get(i)->finalize(); //adjust scores due to overlaps or gaps between seeds
}
diagstrips->setSorted(true); //sort by score
return diagstrips;
}
int cmpSeedScore(const pointer p1, const pointer p2) {
//return (((GXSeed*)s2)->len-((GXSeed*)s1)->len);
GXSeed* s1=(GXSeed*)p1;
GXSeed* s2=(GXSeed*)p2;
if (s1->len==s2->len) {
return (s1->b_ofs-s2->b_ofs);
}
else return (s2->len-s1->len);
}
int cmpSeedScore_R(const pointer p1, const pointer p2) {
//return (((GXSeed*)s2)->len-((GXSeed*)s1)->len);
GXSeed* s1=(GXSeed*)p1;
GXSeed* s2=(GXSeed*)p2;
if (s1->len==s2->len) {
return (s2->b_ofs-s1->b_ofs);
}
else return (s2->len-s1->len);
}
int cmpSeedDiag(const pointer p1, const pointer p2) {
GXSeed* s1=(GXSeed*)p1;
GXSeed* s2=(GXSeed*)p2;
return ((s1->b_ofs-s1->a_ofs)-(s2->b_ofs-s2->a_ofs));
}
int cmpDiagBands_R(const pointer p1, const pointer p2) {
//return (((GXSeed*)s2)->len-((GXSeed*)s1)->len);
GXBand* b1=(GXBand*)p1;
GXBand* b2=(GXBand*)p2;
if (b1->score==b2->score) {
return (b2->w_min_b-b1->w_min_b);
}
else return (b2->score-b1->score);
}
GXAlnInfo* GreedyAlignRegion(const char* q_seq, int q_alnstart, int q_max,
const char* s_seq, int s_alnstart, int s_max,
int reward, int penalty, int xdrop, CGreedyAlignData* gxmem,
CAlnTrim* trim, bool editscript) {
GXEditScript* ed_script_fwd = NULL;
GXEditScript* ed_script_rev = NULL;
if ( q_alnstart>q_max || q_alnstart<1 || s_alnstart>s_max || s_alnstart<1 )
GError("GreedyAlign() Error: invalid anchor coordinate.\n");
q_alnstart--;
s_alnstart--;
if (q_seq==NULL || q_seq[0]==0 || s_seq==NULL || s_seq[0]==0)
GError("GreedyAlign() Error: attempt to use an empty sequence string!\n");
/*if (q_seq[q_alnstart]!=s_seq[s_alnstart])
GError("GreedyAlign() Error: improper anchor (mismatch):\n%s (start %d len %d)\n%s (start %d len %d)\n",
q_seq, q_alnstart, q_max, s_seq, s_alnstart, s_max);
*/
int q_ext_l=0, q_ext_r=0, s_ext_l=0, s_ext_r=0;
const char* q=q_seq+q_alnstart;
int q_avail=q_max-q_alnstart;
const char* s=s_seq+s_alnstart;
int s_avail=s_max-s_alnstart;
if (penalty<0) penalty=-penalty;
GXAlnInfo* alninfo=NULL;
bool freeAlnMem=(gxmem==NULL);
if (freeAlnMem) {
gxmem=new CGreedyAlignData(reward, penalty, xdrop);
reward=gxmem->match_reward;
penalty=gxmem->mismatch_penalty;
xdrop=gxmem->x_drop;
}
else
gxmem->reset();
int minMatch= trim ? trim->minMatch : 6;
int MIN_GREEDY_SCORE=minMatch*reward; //minimum score for an alignment to be reported for 0 diffs
int retscore = 0;
int numdiffs = 0;
if (trim!=NULL && trim->type==galn_TrimLeft) {
//intent: trimming the left side
if (editscript)
ed_script_rev=new GXEditScript();
int numdiffs_l = GXGreedyExtend(s_seq, s_alnstart, q_seq, q_alnstart, true, // xdrop, reward, penalty,
s_ext_l, q_ext_l, *gxmem, ed_script_rev);
//check this extension here and bail out if it's not a good extension
if (s_ext_l+(trim->seedlen>>1) < trim->safelen &&
q_alnstart+1-q_ext_l>1 &&
s_alnstart+1-s_ext_l>trim->l_boundary) {
#ifdef TRIMDEBUG
GMessage(".. 5' greedy alignment rejected (trim_len=%d, trim_safelen=%d, "
"q_delta=%d, s_delta=%d, trim_l_boundary=%d)\n",
s_ext_l+(trim->seedlen>>1), trim->safelen,
q_alnstart+1-q_ext_l, s_alnstart+1-s_ext_l, trim->l_boundary);
#endif
delete ed_script_rev;
if (freeAlnMem) delete gxmem;
return NULL;
}
if (editscript)
ed_script_fwd=new GXEditScript();
int numdiffs_r = GXGreedyExtend(s, s_avail, q, q_avail, false, //xdrop, reward, penalty,
s_ext_r, q_ext_r, *gxmem, ed_script_fwd);
numdiffs=numdiffs_r+numdiffs_l;
//convert num diffs to actual score
retscore = (q_ext_r + s_ext_r + q_ext_l + s_ext_l)*(reward>>1) - numdiffs*(reward+penalty);
if (editscript)
ed_script_rev->Append(ed_script_fwd); //combine the two extensions
}
else {
if (editscript) {
ed_script_fwd=new GXEditScript();
}
int numdiffs_r = GXGreedyExtend(s, s_avail, q, q_avail, false, // xdrop, reward, penalty,
s_ext_r, q_ext_r, *gxmem, ed_script_fwd);
//check extension here and bail out if not a good right extension
//assuming s_max is really at the right end of s_seq
if (trim!=NULL && trim->type==galn_TrimRight &&
s_ext_r+(trim->seedlen>>1) < trim->safelen &&
q_alnstart+q_ext_r<q_max-2 &&
s_alnstart+s_ext_r<trim->r_boundary) {
delete ed_script_fwd;
if (freeAlnMem) delete gxmem;
return NULL;
}
if (editscript)
ed_script_rev=new GXEditScript();
int numdiffs_l = GXGreedyExtend(s_seq, s_alnstart, q_seq, q_alnstart, true, // xdrop, reward, penalty,
s_ext_l, q_ext_l, *gxmem, ed_script_rev);
//convert num diffs to actual score
numdiffs=numdiffs_r+numdiffs_l;
retscore = (q_ext_r + s_ext_r + q_ext_l + s_ext_l)*(reward>>1) - numdiffs*(reward+penalty);
if (editscript)
ed_script_rev->Append(ed_script_fwd); //combine the two extensions
}
if (retscore>=MIN_GREEDY_SCORE) {
alninfo=new GXAlnInfo(q_seq, q_alnstart+1-q_ext_l, q_alnstart+q_ext_r, s_seq, s_alnstart+1-s_ext_l, s_alnstart+s_ext_r);
int hsp_length = GMIN(q_ext_l+q_ext_r, s_ext_l+s_ext_r);
alninfo->score=retscore;
if (gxmem->scaled) alninfo->score >>= 1;
alninfo->pid = 100 * (1 - ((double) numdiffs) / hsp_length);
#ifdef TRIMDEBUG
//if (ed_script_rev) {
// GMessage("Final Edit script ::: ");
// printEditScript(ed_script_rev);
// }
#endif
alninfo->editscript=ed_script_rev;
alninfo->gapinfo = new CAlnGapInfo(ed_script_rev, alninfo->ql-1, alninfo->sl-1);
}
else {
#ifdef TRIMDEBUG
GMessage(".. greedy extension rejected (score=%d)\n", retscore);
#endif
//if (freeAlnMem) delete gxmem;
delete ed_script_rev;
delete alninfo;
alninfo=NULL;
}
if (freeAlnMem) delete gxmem;
delete ed_script_fwd;
return alninfo;
}
GXAlnInfo* GreedyAlignRegion(const char* q_seq, int q_alnstart, int q_max,
const char* s_seq, int s_alnstart, int s_max, CGreedyAlignData* gxmem,
CAlnTrim* trim, bool editscript) {
int reward=2;
int penalty=10;
int xdrop=32;
if (gxmem) {
reward=gxmem->match_reward;
penalty=gxmem->mismatch_penalty;
xdrop=gxmem->x_drop;
}
return GreedyAlignRegion(q_seq, q_alnstart, q_max, s_seq, s_alnstart, s_max,
reward, penalty, xdrop, gxmem, trim, editscript);
}
GXAlnInfo* match_adapter(GXSeqData& sd, GAlnTrimType trim_type, int minMatch,
CGreedyAlignData* gxmem, double min_pid) {
bool editscript=false;
#ifdef TRIMDEBUG
editscript=true;
if (trim_type==galn_TrimLeft) {
GMessage("=======> searching left (5') end : %s\n", sd.aseq);
}
else if (trim_type==galn_TrimRight) {
GMessage("=======> searching right(3') end : %s\n", sd.aseq);
}
else if (trim_type==galn_TrimEither) {
GMessage("==========> searching both ends : %s\n", sd.aseq);
}
#endif
CAlnTrim trimInfo(trim_type, sd.bseq, sd.blen, sd.alen, minMatch, sd.amlen);
GList<GXSeed> rseeds(true,true,false);
GXBandSet* alnbands=collectSeeds(rseeds, sd, trim_type);
GList<GXSeed> anchor_seeds(cmpSeedDiag, NULL, true); //stores unique seeds per diagonal
//did we find a shortcut?
if (alnbands->qmatch) {
#ifdef TRIMDEBUG
GMessage("::: Found a quick long match at %d, len %d\n",
alnbands->qmatch->b_ofs, alnbands->qmatch->len);
#endif
anchor_seeds.Add(alnbands->qmatch);
}
else {
int max_top_bands=5;
int top_band_count=0;
for (int b=0;b<alnbands->Count();b++) {
if (alnbands->Get(b)->score<6) break;
//#ifdef TRIMDEBUG
//GMessage("\tBand %d score: %d\n", b, alnbands->Get(b)->score);
//#endif
top_band_count++;
GXBand& band=*(alnbands->Get(b));
band.seeds.setSorted(cmpSeedScore);
anchor_seeds.Add(band.seeds.First());
//band.tested=true;
if (anchor_seeds.Count()>2 || top_band_count>max_top_bands) break;
}
//#ifdef TRIMDEBUG
//GMessage("::: Collected %d anchor seeds.\n",anchor_seeds.Count());
//#endif
}
GList<GXAlnInfo> galns(true,true,false);
for (int i=0;i<anchor_seeds.Count();i++) {
GXSeed& aseed=*anchor_seeds[i];
int a1=aseed.a_ofs+(aseed.len>>1)+1;
int a2=aseed.b_ofs+(aseed.len>>1)+1;
trimInfo.seedlen=aseed.len;
#ifdef TRIMDEBUG
GMessage("\t::: align from seed (%d, %d) of len %d.\n",aseed.a_ofs, aseed.b_ofs,