-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMakefile
235 lines (203 loc) · 6.47 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
.DEFAULT_GOAL:=help
.EXPORT_ALL_VARIABLES:
ifndef VERBOSE
.SILENT:
endif
#* Variables
PYTHON := python3
PYTHON_RUN := $(PYTHON) -m
ENV_FILE := ./.env
DATASET_KEY := desc2json
COLLATOR_KEY := completion
MODEL_NAME_OR_PATH := mistralai/Mistral-7B-v0.1
USE_FLASH_ATTENTION_2 := False # For mistral
TRAIN_DATA_SAMPLES := 5000
TEST_DATA_SAMPLES := 150
TRAIN_DATA_FILE_PATH := ./data/train.jsonl
TEST_DATA_FILE_PATH := ./data/test.jsonl
LORA_HUB_MODEL_ID := BobaZooba/WGPT-LoRA
HUB_MODEL_ID := BobaZooba/WGPT
GPTQ_HUB_MODEL_ID := BobaZooba/WGPT-GPTQ
NUM_GPUS := 2
FUSED_MODEL_LOCAL_PATH := ./fused_model/
EVAL_LOCAL_PATH_TO_DATA := ./eval.jsonl
help: ## Display this help
@awk 'BEGIN {FS = ":.*##"; printf "\nUsage:\n make \033[36m<target>\033[0m\n"} /^[a-zA-Z0-9_-]+:.*?##/ { printf " \033[36m%-25s\033[0m %s\n", $$1, $$2 } /^##@/ { printf "\n\033[1m%s\033[0m\n", substr($$0, 5) } ' $(MAKEFILE_LIST)
#* Installation
.PHONY: install-xllm-source
install-xllm-source: ## Production installation
$(PYTHON_RUN) pip install git+https://github.com/BobaZooba/xllm
.PHONY: install
install: ## Production installation
$(PYTHON_RUN) pip install .
.PHONY: dev-install
dev-install: ## Development installation
make install
$(PYTHON_RUN) pip install -r requirements-dev.txt
$(PYTHON_RUN) pip install -e .
.PHONY: train-install
train-install: ## Development installation
$(PYTHON_RUN) pip install -r requirements-train.txt
$(PYTHON_RUN) pip install .
.PHONY: pre-commit-install
pre-commit-install: ## Install Pre-Commit Hooks
pre-commit install
#* Generate data
.PHONY: generate-train-data
generate-train-data: ## Run train data
$(PYTHON) wgpt/cli/run_generate_data.py \
--num_samples=$(TRAIN_DATA_SAMPLES) \
--num_samples_per_batch=5 \
--num_rounds_per_call=8 \
--data_file_path=$(TRAIN_DATA_FILE_PATH) \
--fails_file_path=./train_fails.jsonl
.PHONY: generate-test-data
generate-test-data: ## Run test data
$(PYTHON) wgpt/cli/run_generate_data.py \
--num_samples=$(TEST_DATA_SAMPLES) \
--num_samples_per_batch=5 \
--num_rounds_per_call=8 \
--data_file_path=$(TEST_DATA_FILE_PATH) \
--fails_file_path=./data/test_fails.jsonl
.PHONY: generate-data
generate-data: ## Run data
make generate-train-data
make generate-test-data
#* Run
.PHONY: prepare
prepare: ## Run prepare
$(PYTHON) wgpt/cli/run_prepare.py \
--dataset_key $(DATASET_KEY) \
--model_name_or_path $(MODEL_NAME_OR_PATH) \
--path_to_raw_train_file $(TRAIN_DATA_FILE_PATH) \
--path_to_raw_train_file $(TRAIN_DATA_FILE_PATH) \
--eval_local_path_to_data $(EVAL_LOCAL_PATH_TO_DATA) \
--do_eval True \
--max_eval_samples 100 \
--path_to_env_file ./.env
.PHONY: train
train: ## Run train
$(PYTHON) wgpt/cli/run_train.py \
--dataset_key $(DATASET_KEY) \
--collator_key $(COLLATOR_KEY) \
--eval_local_path_to_data $(EVAL_LOCAL_PATH_TO_DATA) \
--use_gradient_checkpointing True \
--deepspeed_stage 0 \
--stabilize False \
--model_name_or_path $(MODEL_NAME_OR_PATH) \
--use_flash_attention_2 $(USE_FLASH_ATTENTION_2) \
--load_in_4bit True \
--apply_lora True \
--raw_lora_target_modules all \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 4 \
--warmup_steps 100 \
--save_total_limit 0 \
--push_to_hub True \
--hub_model_id $(LORA_HUB_MODEL_ID) \
--hub_private_repo False \
--report_to_wandb True \
--logging_steps 1 \
--num_train_epochs 3 \
--save_steps 300 \
--save_safetensors True \
--use_gradient_checkpointing True \
--max_length 2048 \
--prepare_model_for_kbit_training True \
--label_smoothing_factor 0.1 \
--path_to_env_file ./.env
.PHONY: train-deepspeed
train-deepspeed: ## Run train using deepspeed
deepspeed --num_gpus=$(NUM_GPUS) wgpt/cli/run_train.py \
--dataset_key $(DATASET_KEY) \
--collator_key $(COLLATOR_KEY) \
--eval_local_path_to_data $(EVAL_LOCAL_PATH_TO_DATA) \
--do_eval True \
--use_gradient_checkpointing True \
--deepspeed_stage 2 \
--stabilize True \
--model_name_or_path $(MODEL_NAME_OR_PATH) \
--use_flash_attention_2 $(USE_FLASH_ATTENTION_2) \
--load_in_4bit True \
--apply_lora True \
--raw_lora_target_modules all \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2 \
--warmup_steps 100 \
--eval_steps 300 \
--save_total_limit 0 \
--push_to_hub True \
--hub_model_id $(LORA_HUB_MODEL_ID) \
--hub_private_repo False \
--report_to_wandb True \
--logging_steps 1 \
--num_train_epochs 5 \
--save_steps 300 \
--save_safetensors True \
--use_gradient_checkpointing True \
--max_length 2048 \
--prepare_model_for_kbit_training True \
--label_smoothing_factor 0.1 \
--path_to_env_file ./.env
.PHONY: fuse
fuse: ## Run fuse
$(PYTHON) wgpt/cli/run_fuse.py \
--model_name_or_path $(MODEL_NAME_OR_PATH) \
--lora_hub_model_id $(LORA_HUB_MODEL_ID) \
--hub_model_id $(HUB_MODEL_ID) \
--hub_private_repo False \
--force_fp16 True \
--fused_model_local_path $(FUSED_MODEL_LOCAL_PATH) \
--max_shard_size 1GB \
--push_to_hub True \
--path_to_env_file ./.env
.PHONY: quantize
quantize: ## Run GPTQ quantization
$(PYTHON) wgpt/cli/run_quantize.py \
--dataset_key $(DATASET_KEY) \
--collator_key $(COLLATOR_KEY) \
--model_name_or_path $(FUSED_MODEL_LOCAL_PATH) \
--apply_lora False \
--stabilize False \
--quantization_max_samples 64 \
--quantized_model_path ./quantized_model/ \
--prepare_model_for_kbit_training False \
--quantized_hub_model_id $(GPTQ_HUB_MODEL_ID) \
--quantized_hub_private_repo False \
--path_to_env_file ./.env
.PHONY: run-all
run-all: ## Run all
make prepare
make train
make fuse
make quantize
.PHONY: run-all-deepspeed
run-all-deepspeed: ## Run all using deepspeed
make prepare
make train-deepspeed
make fuse
make quantize
.PHONY: eval
eval: ## Run test data
$(PYTHON) wgpt/cli/run_eval.py \
--path_to_data=$(TEST_DATA_FILE_PATH) \
--model_name_or_path=$(FUSED_MODEL_LOCAL_PATH)
#* Formatters
.PHONY: codestyle
codestyle: ## Apply codestyle (black, ruff)
$(PYTHON_RUN) black --config pyproject.toml .
$(PYTHON_RUN) ruff check . --fix --preview
.PHONY: check-black
check-black: ## Check black
$(PYTHON_RUN) black --diff --check --config pyproject.toml src/xllm
.PHONY: check-ruff
check-ruff: ## Check ruff
$(PYTHON_RUN) ruff check src/xllm --preview
.PHONY: check-codestyle
check-codestyle: ## Check codestyle
make check-black
make check-ruff
#* Linting
.PHONY: mypy
mypy: ## Run static code analyzer
$(PYTHON_RUN) mypy --config-file pyproject.toml ./wgpt