-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathneuralnet.cpp
559 lines (431 loc) · 14.3 KB
/
neuralnet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <memory.h>
#include <math.h>
#include "neuralnet.h"
#include "geneticalg.h"
// Manual branch optimization for GCC 3.0.0 and newer
#if !defined(__GNUC__) || __GNUC__ < 3
#define likely(x) (x)
#define unlikely(x) (x)
#else
#define likely(x) __builtin_expect((long int)!!(x), true)
#define unlikely(x) __builtin_expect((long int)!!(x), false)
#endif
extern void fast_random_seed(unsigned int seed);
extern int RANDOM_LONG2(int lLow, int lHigh);
extern float RANDOM_FLOAT2(float flLow, float flHigh);
static int get_random_int(int x,int y)
{
return RANDOM_LONG2(x, y);
}
// return random value in range 0 < n < 1
static double get_random(void)
{
return RANDOM_FLOAT2(0.0, 1.0);
}
// return random value in range -1 < n < 1
static double get_random_weight(void)
{
return get_random() - get_random();
}
/******************************************************************* CNeuron */
CNeuron::CNeuron(int num_inputs, double in_weights[]):
m_num_inputs(num_inputs + 1),
m_weights(in_weights)
{
}
// one extra slot needed for bias + one extra slot needed for scale
int CNeuron::calc_needed_weights(int num_inputs)
{
return num_inputs + 1;
}
/************************************************************** CNeuronLayer */
CNeuronLayer::CNeuronLayer(int num_neurons, int num_inputs_per_neuron, CNeuron in_neurons[], double in_weights[]):
m_num_neurons(num_neurons),
m_neurons(in_neurons)
{
int i, weight_pos;
weight_pos = 0;
for (i = 0; i < m_num_neurons; i++) {
m_neurons[i] = CNeuron(num_inputs_per_neuron, &in_weights[weight_pos]);
weight_pos += num_inputs_per_neuron;
}
}
int CNeuronLayer::calc_needed_weights(int num_neurons, int num_inputs_per_neuron)
{
return CNeuron::calc_needed_weights(num_inputs_per_neuron) * num_neurons;
}
/**************************************************************** CNeuralNet */
CNeuralNet::CNeuralNet(int num_inputs, int num_outputs, int num_hidden, int num_neurons_per_hidden):
m_num_inputs(num_inputs),
m_num_outputs(num_outputs),
m_num_hidden(num_hidden),
m_num_neurons_per_hidden(num_neurons_per_hidden),
m_widest_weight_array(0),
m_widest_layer(0),
m_bias(-1.0),
m_activation_response(1.0),
m_num_layers(num_hidden + 1), // hidden + output
m_layers(NULL),
m_num_weights(0),
m_weights(NULL),
m_num_neurons(0),
m_neurons(NULL)
{
int i, j, weight_pos, neuron_pos;
if (m_num_layers == 0)
return;
// calculated number of needed weights in neural network
if (m_num_layers == 1)
m_num_weights = CNeuronLayer::calc_needed_weights(m_num_outputs, m_num_inputs); // output layer
else {
m_num_weights = CNeuronLayer::calc_needed_weights(m_num_neurons_per_hidden, m_num_inputs) // first hidden layer
+ CNeuronLayer::calc_needed_weights(m_num_neurons_per_hidden, m_num_neurons_per_hidden) * (m_num_layers - 2)// inner hidden layers
+ CNeuronLayer::calc_needed_weights(m_num_outputs, m_num_neurons_per_hidden); // output layer
}
// create network wide weight array
m_weights = (double *)calloc(1, sizeof(double) * m_num_weights);
reset_weights_random();
// create network wide neuron array
m_neurons = (CNeuron *)calloc(1, sizeof(CNeuron) * (m_num_outputs + m_num_neurons_per_hidden * m_num_hidden));
// create neuron layers
m_layers = new CNeuronLayer[m_num_layers];
if (m_num_layers == 1) {
// create output layer
m_layers[0] = CNeuronLayer(m_num_outputs, m_num_inputs, m_neurons, m_weights);
} else {
// create first hidden layer
m_layers[0] = CNeuronLayer(m_num_neurons_per_hidden, m_num_inputs, m_neurons, m_weights);
weight_pos = CNeuronLayer::calc_needed_weights(m_num_neurons_per_hidden, m_num_inputs);
neuron_pos = m_num_neurons_per_hidden;
// create inner hidden layers
for (i = 1; i < m_num_layers - 1; i++) {
m_layers[i] = CNeuronLayer(m_num_neurons_per_hidden, m_num_neurons_per_hidden, &m_neurons[neuron_pos], &m_weights[weight_pos]);
weight_pos += CNeuronLayer::calc_needed_weights(m_num_neurons_per_hidden, m_num_neurons_per_hidden);
neuron_pos += m_num_neurons_per_hidden;
}
// create output layer
m_layers[m_num_layers - 1] = CNeuronLayer(m_num_outputs, m_num_neurons_per_hidden, &m_neurons[neuron_pos], &m_weights[weight_pos]);
}
// get widest layer and weight array
m_widest_weight_array = 0;
m_widest_layer = 0;
for (i = 0; i < m_num_layers; i++) {
if (m_widest_layer < m_layers[i].get_num_neurons())
m_widest_layer = m_layers[i].get_num_neurons();
for (j = 0; j < m_layers[i].get_num_neurons(); j++)
if (m_widest_weight_array < m_layers[i].m_neurons[j].get_num_inputs())
m_widest_weight_array = m_layers[i].m_neurons[j].get_num_inputs();
}
}
// destructor, release memory
CNeuralNet::~CNeuralNet(void)
{
if (m_weights) {
free(m_weights);
m_weights = NULL;
}
if (m_layers) {
delete[] m_layers;
m_layers = NULL;
}
if (m_neurons) {
free(m_neurons);
m_neurons = NULL;
}
}
// reset neuron weights to random
void CNeuralNet::reset_weights_random(void)
{
int i;
for (i = 0; i < m_num_weights; i++)
m_weights[i] = get_random_weight();
}
// weights must have array size of m_num_weights
double *CNeuralNet::get_weights(double weights[]) const
{
int i;
for (i = 0; i < m_num_weights; i++)
weights[i] = m_weights[i];
return weights;
}
// weights must have array size of m_num_weights, allocated by caller
void CNeuralNet::put_weights(double weights[])
{
int i;
for (i = 0; i < m_num_weights; i++)
m_weights[i] = weights[i];
}
static double expanded_sigmoid(double activation, double response = 1.0)
{
double s;
// input activation is -1..1, convert to 0..1
activation = (activation + 1) / 2;
s = 1 / ( 1 + exp(-activation / response));
// s is 0..1, convert to -1..1
return (s * 2) - 1;
}
double *CNeuralNet::run(const double inputs[], double outputs[]) const
{
return run(inputs, outputs, NULL);
}
double *CNeuralNet::run(const double inputs[], double outputs[], const double scales[]) const
{
int i;
double *ptr1, *ptr2, *out;
if (m_num_layers < 1)
return NULL;
ptr1 = (double*)alloca(m_widest_layer * sizeof(double));
ptr2 = (double*)alloca(m_widest_layer * sizeof(double));
out = run_internal(inputs, outputs, ptr1, ptr2);
if (scales)
for (i = 0; i < m_num_outputs; i++)
outputs[i] = out[i] * scales[i];
else
for (i = 0; i < m_num_outputs; i++)
outputs[i] = out[i];
return out;
}
// run neural network, inputs must have array size of m_num_inputs
// and output must have array size of m_num_outputs
// ptr1 and ptr2 are temporary buffers
double *CNeuralNet::run_internal(const double orig_inputs[], double target_outputs[], double *ptr1, double *ptr2) const
{
int i, j, k, in_size, out_size = 0;
double *outputs = NULL;
const double *inputs;
bool ptr1_used = false, ptr2_used = false;
inputs = orig_inputs;
in_size = m_num_inputs;
// walk through all layers
for (i = 0; i < m_num_layers; i++) {
const CNeuronLayer &cur_layer = m_layers[i];
if (likely(i > 0)) {
// free old input slot
ptr1_used = !(inputs == ptr1) & ptr1_used;
ptr2_used = !(inputs == ptr2) & ptr2_used;
inputs = outputs;
in_size = out_size;
}
out_size = cur_layer.get_num_neurons();
// get memory slot for output array
if (!ptr1_used) {
outputs = ptr1;
ptr1_used = true;
} else {
outputs = ptr2;
ptr2_used = true;
}
// walk through all neurons in current layer
for (j = 0; j < cur_layer.get_num_neurons(); j++) {
const CNeuron &cur_neuron = cur_layer.m_neurons[j];
double sum = 0;
// for each weight
for (k = 0; k < cur_neuron.get_num_inputs() - 1; k++)
//sum the weights x inputs
sum += cur_neuron.m_weights[k] * inputs[k];
// add bias
sum += cur_neuron.m_weights[cur_neuron.get_num_inputs() - 1] * m_bias;
outputs[j] = expanded_sigmoid(sum);
}
}
return outputs;
}
void CNeuralNet::print(void) const
{
int i, j, k;
for (i = 0; i < m_num_layers; i++) {
printf("layer [%i] neurons[%i]:\n", i, m_layers[i].get_num_neurons());
for (j = 0; j < m_layers[i].get_num_neurons(); j++) {
printf(" neuron [%i:%i] inputs[%i]:\n", i, j, m_layers[i].m_neurons[j].get_num_inputs());
printf(" ");
for (k = 0; k < m_layers[i].m_neurons[j].get_num_inputs(); k++) {
printf("[%f] ", m_layers[i].m_neurons[j].m_weights[k]);
}
printf("\n");
}
}
}
/*********************************************************** testing section */
/*
double training_inputs[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
int training_outputs[4] = {0, 1, 2, 3};
int main()
{
int i, j, k;
int rnd_idx;
double input[2] = {1, -1};
double output[1];
double diff = 0;
fast_random_seed(time(0) ^ (long)&diff ^ (long)&main);
CNeuralNet *nnet = new CNeuralNet(2, 1, 5, 5);
CPopulation population = CPopulation(20, nnet->get_num_weights());
CGeneticAlgorithm genalg(0.2, 0.7, -1);
printf("ok\n");
fflush(stdout);
CGenome *best_genome;
for (k = 0; k < 1000; k++) {
//printf("k: %i\n", k);
for (i = 0; i < 500; i++) {
//printf(" i: %i\n", i);
for (j = 0; j < population.get_size(); j++) {
//printf(" j: %i\n", j);
rnd_idx = get_random_int(0, 3);
CGenome *genome = population.get_individual(j);
nnet->put_weights(genome->m_genes);
nnet->run(training_inputs[rnd_idx], output);
diff = fabs(output[0] - training_outputs[rnd_idx]);
//printf(" output: %f\n", output[0]);
//printf("should be: %f\n", training_outputs[rnd_idx]);
//printf(" diff: %f\n", diff);
if (diff < 4.0)
genome->m_fitness += 4.0 - diff;
}
}
if (!(k % 100)) {
CGenome *genome = population.get_fittest_individual();
nnet->put_weights(genome->m_genes);
nnet->run(input, output);
printf("generation: %i\n", genalg.get_generation());
printf("best fitness: %f\n", genome->m_fitness);
nnet->run(training_inputs[0], output);
printf("input: %f, %f\n", training_inputs[0][0], training_inputs[0][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[1], output);
printf("input: %f, %f\n", training_inputs[1][0], training_inputs[1][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[2], output);
printf("input: %f, %f\n", training_inputs[2][0], training_inputs[2][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[3], output);
printf("input: %f, %f\n", training_inputs[3][0], training_inputs[3][1]);
printf("output: %f\n", output[0]);
}
if (k+1 < 1000) {
CPopulation new_pop = CPopulation(population.get_size(), nnet->get_num_weights());
genalg.epoch(population, new_pop);
population.free_mem();
population = new_pop;
}
}
CGenome *genome = population.get_fittest_individual();
nnet->put_weights(genome->m_genes);
nnet->run(input, output);
nnet->print();
printf("generation: %i\n", genalg.get_generation());
printf("best fitness: %f\n", genome->m_fitness);
nnet->run(training_inputs[0], output);
printf("input: %f, %f\n", training_inputs[0][0], training_inputs[0][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[1], output);
printf("input: %f, %f\n", training_inputs[1][0], training_inputs[1][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[2], output);
printf("input: %f, %f\n", training_inputs[2][0], training_inputs[2][1]);
printf("output: %f\n", output[0]);
nnet->run(training_inputs[3], output);
printf("input: %f, %f\n", training_inputs[3][0], training_inputs[3][1]);
printf("output: %f\n", output[0]);
delete nnet;
}
*/
double f(double x, double y, double z) {
return x*x;
//return x*6;
}
static double scale_output(double max, double min, double output)
{
// -1..+1 => max..min
return (max - min) * (output + 1) / 2 + min;
}
// training
int main()
{
int i, j, k;
int rnd_idx;
double input[3];
double output[1];
double scale[1] = {100};
double diff = 0;
fast_random_seed(time(0) ^ (long)&diff ^ (long)&main);
CNeuralNet *nnet = new CNeuralNet(1, 1, 1, 4);
CPopulation population = CPopulation(25, nnet->get_num_weights());
CGeneticAlgorithm genalg(0.2, 0.7);
printf("ok\n");
fflush(stdout);
CGenome *best_genome;
for (k = 0; k < 5000; k++) {
//printf("k: %i\n", k);
for (j = 0; j < population.get_size(); j++) {
double x, y, z, foutput;
CGenome *genome = population.get_individual(j);
nnet->put_weights(genome->m_genes);
for (x = -0.5; x <= 4.5; x += 1) {
for (y = -0.5; y <= 4.5; y += 1) {
for (z = -0.5; z <= 4.5; z += 1) {
input[0] = x;
input[1] = y;
input[2] = z;
nnet->run(input, output, scale);
foutput = f(input[0], input[1], input[2]);
diff = output[0] - foutput;
genome->m_fitness += -(diff*diff)*0.0002;
}
}
}
//printf(" j: %i\n", j);
for (i = 0; i < 500; i++) {
//printf(" i: %i\n", i);
input[0] = get_random() * 5 - 0.5;
input[1] = get_random() * 5 - 0.5;
input[2] = get_random() * 5 - 0.5;
nnet->run(input, output, scale);
foutput = f(input[0], input[1], input[2]);
diff = output[0] - foutput;
genome->m_fitness += -(diff*diff)*0.0001;
//diff = fabs(output[1] - sin(random_angle));
//if (diff < 1.0)
// genome->m_fitness += 1.0 - diff;
//printf(" output: %f\n", output[0]);
//printf("should be: %f\n", training_outputs[rnd_idx]);
//printf(" diff: %f\n", diff);
}
}
if (!(k % 100)) {
CGenome *genome = population.get_fittest_individual();
nnet->put_weights(genome->m_genes);
nnet->run(input, output);
printf("generation: %i\n", genalg.get_generation());
printf("best fitness: %f\n", genome->m_fitness);
input[0] = 1;
input[1] = 2;
input[2] = 3;
nnet->run(input, output, scale);
printf("input: %f:%f:%f (=> %f)\n", input[0], input[1], input[2], f(input[0], input[1], input[2]));
printf("output: %f\n", output[0]);
}
if (k+1 < 5000) {
CPopulation new_pop = CPopulation(population.get_size(), nnet->get_num_weights());
genalg.epoch(population, new_pop);
population.free_mem();
population = new_pop;
}
}
CGenome *genome = population.get_fittest_individual();
nnet->put_weights(genome->m_genes);
nnet->run(input, output);
nnet->print();
printf("generation: %i\n", genalg.get_generation());
printf("best fitness: %f\n", genome->m_fitness);
for (i = 0; i < 9; i++) {
input[0] = i * 0.5;
input[1] = (9 - i) * 0.5;
input[2] = i % 4;
nnet->run(input, output, scale);
printf("input: %f:%f:%f (=> %f)\n", input[0], input[1], input[2], f(input[0], input[1], input[2]));
printf("output: %f\n", output[0]);
}
delete nnet;
}