-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathteam_code.py
466 lines (357 loc) · 18 KB
/
team_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/env python
# Edit this script to add your team's code. Some functions are *required*, but you can edit most parts of the required functions,
# change or remove non-required functions, and add your own functions.
################################################################################
#
# Import libraries and functions. You can change or remove them.
#
################################################################################
from helper_code import *
import numpy as np, scipy as sp, scipy.stats, os, sys, joblib
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.class_weight import compute_class_weight
import os
import tqdm
import numpy as np
import tensorflow as tf
from scipy import signal
from sklearn.model_selection import StratifiedKFold
from sklearn.utils.class_weight import compute_class_weight
################################################################################
#
# Required functions. Edit these functions to add your code, but do not change the arguments.
#
################################################################################
# Train your model.
def train_challenge_model(data_folder, model_folder, verbose):
# Find data files.
if verbose >= 1:
print('Finding data files...')
PRE_TRAIN = False
NEW_FREQUENCY = 100 # longest signal, while resampling to 500Hz = 32256 samples
EPOCHS_1 = 30
EPOCHS_2 = 20
BATCH_SIZE_1 = 20
BATCH_SIZE_2 = 20
# Find the patient data files.
patient_files = find_patient_files(data_folder)
num_patient_files = len(patient_files)
if num_patient_files==0:
raise Exception('No data was provided.')
# Create a folder for the model if it does not already exist.
os.makedirs(model_folder, exist_ok=True)
#TODO: remove this:
#classes = ['Present', 'Unknown', 'Absent']
#num_classes = len(classes)
murmur_classes = ['Present', 'Unknown', 'Absent']
num_murmur_classes = len(murmur_classes)
outcome_classes = ['Abnormal', 'Normal']
num_outcome_classes = len(outcome_classes)
# Extract the features and labels.
if verbose >= 1:
print('Extracting features and labels from the Challenge data...')
data = []
murmurs = list()
outcomes = list()
for i in tqdm.tqdm(range(num_patient_files)):
# Load the current patient data and recordings.
current_patient_data = load_patient_data(patient_files[i])
current_recordings, freq = load_recordings(data_folder, current_patient_data, get_frequencies=True)
for j in range(len(current_recordings)):
data.append(signal.resample(current_recordings[j], int((len(current_recordings[j])/freq[j]) * NEW_FREQUENCY)))
current_auscultation_location = current_patient_data.split('\n')[1:len(current_recordings)+1][j].split(" ")[0]
all_murmur_locations = get_murmur_locations(current_patient_data).split("+")
current_murmur = np.zeros(num_murmur_classes, dtype=int)
if get_murmur(current_patient_data) == "Present":
if current_auscultation_location in all_murmur_locations:
current_murmur[0] = 1
else:
pass
elif get_murmur(current_patient_data) == "Unknown":
current_murmur[1] = 1
elif get_murmur(current_patient_data) == "Absent":
current_murmur[2] = 1
murmurs.append(current_murmur)
current_outcome = np.zeros(num_outcome_classes, dtype=int)
outcome = get_outcome(current_patient_data)
if outcome in outcome_classes:
j = outcome_classes.index(outcome)
current_outcome[j] = 1
outcomes.append(current_outcome)
data_padded = pad_array(data)
data_padded = np.expand_dims(data_padded,2)
murmurs = np.vstack(murmurs)
outcomes = np.argmax(np.vstack(outcomes),axis=1)
print(f"Number of signals = {data_padded.shape[0]}")
# The prevalence of the 3 different labels
print("Murmurs prevalence:")
print(f"Present = {np.where(np.argmax(murmurs,axis=1)==0)[0].shape[0]}, Unknown = {np.where(np.argmax(murmurs,axis=1)==1)[0].shape[0]}, Absent = {np.where(np.argmax(murmurs,axis=1)==2)[0].shape[0]}")
print("Outcomes prevalence:")
print(f"Abnormal = {len(np.where(outcomes==0)[0])}, Normal = {len(np.where(outcomes==1)[0])}")
new_weights_murmur=calculating_class_weights(murmurs)
keys = np.arange(0,len(murmur_classes),1)
murmur_weight_dictionary = dict(zip(keys, new_weights_murmur.T[1]))
weight_outcome = np.unique(outcomes, return_counts=True)[1][0]/np.unique(outcomes, return_counts=True)[1][1]
outcome_weight_dictionary = {0: 1.0, 1:weight_outcome}
lr_schedule = tf.keras.callbacks.LearningRateScheduler(scheduler_2, verbose=0)
gpus = tf.config.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy(gpus)
with strategy.scope():
if PRE_TRAIN == False:
# Initiate the model.
clinical_model = build_clinical_model(data_padded.shape[1],data_padded.shape[2])
murmur_model = build_murmur_model(data_padded.shape[1],data_padded.shape[2])
elif PRE_TRAIN == True:
model = base_model(data_padded.shape[1],data_padded.shape[2])
model.load_weights("./pretrained_model.h5")
outcome_layer = tf.keras.layers.Dense(1, "sigmoid", name="clinical_output")(model.layers[-2].output)
clinical_model = tf.keras.Model(inputs=model.layers[0].output, outputs=[outcome_layer])
clinical_model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
metrics = [tf.keras.metrics.BinaryAccuracy(),tf.keras.metrics.AUC(curve='ROC')])
murmur_layer = tf.keras.layers.Dense(3, "softmax", name="murmur_output")(model.layers[-2].output)
murmur_model = tf.keras.Model(inputs=model.layers[0].output, outputs=[murmur_layer])
murmur_model.compile(loss="categorical_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
metrics = [tf.keras.metrics.CategoricalAccuracy(), tf.keras.metrics.AUC(curve='ROC')])
murmur_model.fit(x=data_padded, y=murmurs, epochs=EPOCHS_1, batch_size=BATCH_SIZE_1,
verbose=1, shuffle = True,
class_weight=murmur_weight_dictionary
#,callbacks=[lr_schedule]
)
clinical_model.fit(x=data_padded, y=outcomes, epochs=EPOCHS_2, batch_size=BATCH_SIZE_2,
verbose=1, shuffle = True,
class_weight=outcome_weight_dictionary
#,callbacks=[lr_schedule]
)
murmur_model.save(os.path.join(model_folder, 'murmur_model.h5'))
clinical_model.save(os.path.join(model_folder, 'clinical_model.h5'))
# Save the model.
#save_challenge_model(model_folder, classes, imputer, classifier)
# Load your trained model. This function is *required*. You should edit this function to add your code, but do *not* change the
# arguments of this function.
def load_challenge_model(model_folder, verbose):
model_dict = {}
for i in os.listdir(model_folder):
model = tf.keras.models.load_model(os.path.join(model_folder, i))
model_dict[i.split(".")[0]] = model
return model_dict
# Run your trained model. This function is *required*. You should edit this function to add your code, but do *not* change the
# arguments of this function.
def run_challenge_model(model, data, recordings, verbose):
NEW_FREQUENCY = 100
murmur_classes = ['Present', 'Unknown', 'Absent']
outcome_classes = ['Abnormal', 'Normal']
# Load the data.
#indx = get_lead_index(data)
#extracted_recordings = np.asarray(recordings)[indx]
new_sig_len = model["murmur_model"].get_config()['layers'][0]['config']['batch_input_shape'][1]
data_padded = np.zeros((len(recordings),int(new_sig_len),1))
freq = get_frequency(data)
murmur_probabilities_temp = np.zeros((len(recordings),3))
outcome_probabilities_temp = np.zeros((len(recordings),1))
for i in range(len(recordings)):
data = np.zeros((1,new_sig_len,1))
rec = np.asarray(recordings[i])
resamp_sig = signal.resample(rec, int((len(rec)/freq) * NEW_FREQUENCY))
data[0,:len(resamp_sig),0] = resamp_sig
murmur_probabilities_temp[i,:] = model["murmur_model"].predict(data)
outcome_probabilities_temp[i,:] = model["clinical_model"].predict(data)
avg_outcome_probabilities = np.sum(outcome_probabilities_temp)/len(recordings)
avg_murmur_probabilities = np.sum(murmur_probabilities_temp,axis = 0)/len(recordings)
binarized_murmur_probabilities = np.argmax(murmur_probabilities_temp, axis = 1)
binarized_outcome_probabilities = (outcome_probabilities_temp > 0.5) * 1
murmur_labels = np.zeros(len(murmur_classes), dtype=np.int_)
#murmur_indx = np.bincount(binarized_murmur_probabilities).argmax()
#murmur_labels[murmur_indx] = 1
if 0 in binarized_murmur_probabilities:
murmur_labels[0] = 1
elif 2 in binarized_murmur_probabilities:
murmur_labels[2] = 1
elif 1 in binarized_murmur_probabilities:
murmur_labels[1] = 1
outcome_labels = np.zeros(len(outcome_classes), dtype=np.int_)
# 0 = abnormal outcome
if 0 in binarized_outcome_probabilities:
outcome_labels[0] = 1
else:
outcome_labels[1] = 1
outcome_probabilities = np.array([avg_outcome_probabilities,1-avg_outcome_probabilities])
murmur_probabilities = avg_murmur_probabilities
classes = murmur_classes + outcome_classes
labels = np.concatenate((murmur_labels, outcome_labels))
probabilities = np.concatenate((murmur_probabilities.ravel(), outcome_probabilities.ravel()))
return classes, labels, probabilities
################################################################################
#
# Optional functions. You can change or remove these functions and/or add new functions.
#
################################################################################
# Extract features from the data.
def get_features(data, recordings):
# Extract the age group and replace with the (approximate) number of months for the middle of the age group.
age_group = get_age(data)
if compare_strings(age_group, 'Neonate'):
age = 0.5
elif compare_strings(age_group, 'Infant'):
age = 6
elif compare_strings(age_group, 'Child'):
age = 6 * 12
elif compare_strings(age_group, 'Adolescent'):
age = 15 * 12
elif compare_strings(age_group, 'Young Adult'):
age = 20 * 12
else:
age = float('nan')
# Extract sex. Use one-hot encoding.
sex = get_sex(data)
sex_features = np.zeros(2, dtype=int)
if compare_strings(sex, 'Female'):
sex_features[0] = 1
elif compare_strings(sex, 'Male'):
sex_features[1] = 1
# Extract height and weight.
height = get_height(data)
weight = get_weight(data)
# Extract pregnancy status.
is_pregnant = get_pregnancy_status(data)
# Extract recording locations and data. Identify when a location is present, and compute the mean, variance, and skewness of
# each recording. If there are multiple recordings for one location, then extract features from the last recording.
locations = get_locations(data)
recording_locations = ['AV', 'MV', 'PV', 'TV', 'PhC']
num_recording_locations = len(recording_locations)
recording_features = np.zeros((num_recording_locations, 4), dtype=float)
num_locations = len(locations)
num_recordings = len(recordings)
if num_locations==num_recordings:
for i in range(num_locations):
for j in range(num_recording_locations):
if compare_strings(locations[i], recording_locations[j]) and np.size(recordings[i])>0:
recording_features[j, 0] = 1
recording_features[j, 1] = np.mean(recordings[i])
recording_features[j, 2] = np.var(recordings[i])
recording_features[j, 3] = sp.stats.skew(recordings[i])
recording_features = recording_features.flatten()
features = np.hstack(([age], sex_features, [height], [weight], [is_pregnant], recording_features))
return np.asarray(features, dtype=np.float32)
def _inception_module(input_tensor, stride=1, activation='linear', use_bottleneck=True, kernel_size=40, bottleneck_size=32, nb_filters=32):
if use_bottleneck and int(input_tensor.shape[-1]) > 1:
input_inception = tf.keras.layers.Conv1D(filters=bottleneck_size, kernel_size=1,
padding='same', activation=activation, use_bias=False)(input_tensor)
else:
input_inception = input_tensor
# kernel_size_s = [3, 5, 8, 11, 17]
kernel_size_s = [kernel_size // (2 ** i) for i in range(3)]
conv_list = []
for i in range(len(kernel_size_s)):
conv_list.append(tf.keras.layers.Conv1D(filters=nb_filters, kernel_size=kernel_size_s[i],
strides=stride, padding='same', activation=activation, use_bias=False)(
input_inception))
max_pool_1 = tf.keras.layers.MaxPool1D(pool_size=3, strides=stride, padding='same')(input_tensor)
conv_6 = tf.keras.layers.Conv1D(filters=nb_filters, kernel_size=1,
padding='same', activation=activation, use_bias=False)(max_pool_1)
conv_list.append(conv_6)
x = tf.keras.layers.Concatenate(axis=2)(conv_list)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(activation='relu')(x)
return x
def _shortcut_layer(input_tensor, out_tensor):
shortcut_y = tf.keras.layers.Conv1D(filters=int(out_tensor.shape[-1]), kernel_size=1,
padding='same', use_bias=False)(input_tensor)
shortcut_y = tf.keras.layers.BatchNormalization()(shortcut_y)
x = tf.keras.layers.Add()([shortcut_y, out_tensor])
x = tf.keras.layers.Activation('relu')(x)
return x
def base_model(sig_len,n_features, depth=10, use_residual=True):
input_layer = tf.keras.layers.Input(shape=(sig_len,n_features))
x = input_layer
input_res = input_layer
for d in range(depth):
x = _inception_module(x)
if use_residual and d % 3 == 2:
x = _shortcut_layer(input_res, x)
input_res = x
gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x)
output = tf.keras.layers.Dense(1, activation='sigmoid')(gap_layer)
model = tf.keras.models.Model(inputs=input_layer, outputs=output)
return model
def build_murmur_model(sig_len,n_features, depth=10, use_residual=True):
input_layer = tf.keras.layers.Input(shape=(sig_len,n_features))
x = input_layer
input_res = input_layer
for d in range(depth):
x = _inception_module(x)
if use_residual and d % 3 == 2:
x = _shortcut_layer(input_res, x)
input_res = x
gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x)
murmur_output = tf.keras.layers.Dense(3, activation='softmax', name="murmur_output")(gap_layer)
#clinical_output = tf.keras.layers.Dense(1, activation='sigmoid', name="clinical_output")(gap_layer)
model = tf.keras.models.Model(inputs=input_layer, outputs=murmur_output)
model.compile(loss="categorical_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), metrics = [tf.keras.metrics.CategoricalAccuracy(),
tf.keras.metrics.AUC(curve='ROC')])
return model
def build_clinical_model(sig_len,n_features, depth=10, use_residual=True):
input_layer = tf.keras.layers.Input(shape=(sig_len,n_features))
x = input_layer
input_res = input_layer
for d in range(depth):
x = _inception_module(x)
if use_residual and d % 3 == 2:
x = _shortcut_layer(input_res, x)
input_res = x
gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x)
clinical_output = tf.keras.layers.Dense(1, activation='sigmoid', name="clinical_output")(gap_layer)
model = tf.keras.models.Model(inputs=input_layer, outputs=clinical_output)
model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), metrics = [tf.keras.metrics.BinaryAccuracy(),
tf.keras.metrics.AUC(curve='ROC')])
return model
def get_lead_index(patient_metadata):
lead_name = []
lead_num = []
cnt = 0
for i in patient_metadata.splitlines():
if i.split(" ")[0] == "AV" or i.split(" ")[0] == "PV" or i.split(" ")[0] == "TV" or i.split(" ")[0] == "MV":
if not i.split(" ")[0] in lead_name:
lead_name.append(i.split(" ")[0])
lead_num.append(cnt)
cnt += 1
return np.asarray(lead_num)
def scheduler(epoch, lr):
if epoch == 10:
return lr * 0.1
elif epoch == 15:
return lr * 0.1
elif epoch == 20:
return lr * 0.1
else:
return lr
def scheduler_2(epoch, lr):
return lr - (lr * 0.1)
def get_murmur_locations(data):
murmur_location = None
for l in data.split('\n'):
if l.startswith('#Murmur locations:'):
try:
murmur_location = l.split(': ')[1]
except:
pass
if murmur_location is None:
raise ValueError('No outcome available. Is your code trying to load labels from the hidden data?')
return murmur_location
def pad_array(data, signal_length = None):
max_len = 0
for i in data:
if len(i) > max_len:
max_len = len(i)
if not signal_length == None:
max_len = signal_length
new_arr = np.zeros((len(data),max_len))
for j in range(len(data)):
new_arr[j,:len(data[j])] = data[j]
return new_arr
def calculating_class_weights(y_true):
number_dim = np.shape(y_true)[1]
weights = np.empty([number_dim, 2])
for i in range(number_dim):
weights[i] = compute_class_weight(class_weight='balanced', classes=[0.,1.], y=y_true[:, i])
return weights