-
Notifications
You must be signed in to change notification settings - Fork 62
/
laghos_assembly.hpp
137 lines (119 loc) · 4.86 KB
/
laghos_assembly.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#ifndef MFEM_LAGHOS_ASSEMBLY
#define MFEM_LAGHOS_ASSEMBLY
#include "mfem.hpp"
#include "general/forall.hpp"
#include "linalg/dtensor.hpp"
namespace mfem
{
namespace hydrodynamics
{
// Container for all data needed at quadrature points.
struct QuadratureData
{
// Reference to physical Jacobian for the initial mesh.
// These are computed only at time zero and stored here.
DenseTensor Jac0inv;
// Quadrature data used for full/partial assembly of the force operator.
// At each quadrature point, it combines the stress, inverse Jacobian,
// determinant of the Jacobian and the integration weight.
// It must be recomputed in every time step.
DenseTensor stressJinvT;
// Quadrature data used for full/partial assembly of the mass matrices.
// At time zero, we compute and store (rho0 * det(J0) * qp_weight) at each
// quadrature point. Note the at any other time, we can compute
// rho = rho0 * det(J0) / det(J), representing the notion of pointwise mass
// conservation.
Vector rho0DetJ0w;
// Initial length scale. This represents a notion of local mesh size.
// We assume that all initial zones have similar size.
double h0;
// Estimate of the minimum time step over all quadrature points. This is
// recomputed at every time step to achieve adaptive time stepping.
double dt_est;
QuadratureData(int dim, int NE, int quads_per_el)
: Jac0inv(dim, dim, NE * quads_per_el),
stressJinvT(NE * quads_per_el, dim, dim),
rho0DetJ0w(NE * quads_per_el) { }
};
// This class is used only for visualization. It assembles (rho, phi) in each
// zone, which is used by LagrangianHydroOperator::ComputeDensity to do an L2
// projection of the density.
class DensityIntegrator : public LinearFormIntegrator
{
using LinearFormIntegrator::AssembleRHSElementVect;
private:
const QuadratureData &qdata;
public:
DensityIntegrator(QuadratureData &qdata) : qdata(qdata) { }
virtual void AssembleRHSElementVect(const FiniteElement &fe,
ElementTransformation &Tr,
Vector &elvect);
};
// Performs full assembly for the force operator.
class ForceIntegrator : public BilinearFormIntegrator
{
private:
const QuadratureData &qdata;
public:
ForceIntegrator(QuadratureData &qdata) : qdata(qdata) { }
virtual void AssembleElementMatrix2(const FiniteElement &trial_fe,
const FiniteElement &test_fe,
ElementTransformation &Tr,
DenseMatrix &elmat);
};
// Performs partial assembly for the force operator.
class ForcePAOperator : public Operator
{
private:
const int dim, NE;
const QuadratureData &qdata;
const ParFiniteElementSpace &H1, &L2;
const Operator *H1R, *L2R;
const IntegrationRule &ir1D;
const int D1D, Q1D, L1D, H1sz, L2sz;
const DofToQuad *L2D2Q, *H1D2Q;
mutable Vector X, Y;
public:
ForcePAOperator(const QuadratureData&,
ParFiniteElementSpace&,
ParFiniteElementSpace&,
const IntegrationRule&);
virtual void Mult(const Vector&, Vector&) const;
virtual void MultTranspose(const Vector&, Vector&) const;
};
// Performs partial assembly for the velocity mass matrix.
class MassPAOperator : public Operator
{
private:
const MPI_Comm comm;
const int dim, NE, vsize;
ParBilinearForm pabf;
int ess_tdofs_count;
Array<int> ess_tdofs;
OperatorPtr mass;
public:
MassPAOperator(ParFiniteElementSpace&, const IntegrationRule&, Coefficient&);
virtual void Mult(const Vector&, Vector&) const;
void MultFull(const Vector &x, Vector &y) const { mass->Mult(x, y); }
virtual void SetEssentialTrueDofs(Array<int>&);
virtual void EliminateRHS(Vector&) const;
const ParBilinearForm &GetBF() const { return pabf; }
};
} // namespace hydrodynamics
} // namespace mfem
#endif // MFEM_LAGHOS_ASSEMBLY